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Kureš . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Thermostatistics of basic-deformed bosons and fermions
Lavagno - Gervino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Monodromy of the axially symmetric 1:1:-2 resonance
Marchesiello - Efstathiou - Hanssmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Scattering analysis of a non-linear locally driven potential.
Medina Sánchez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Classication of nonlinear equations with two-soliton solution
Perezhogin - Il’in - Noshchenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Thermal Expansion of Crystalline Silicon - Nonlinear Models and Bayesian Model Selection
Palmisano - Middelman - Gervino - Mana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

New brackets in Hamiltonian systems with non-zero Berry curvature
Protogenov - Chulkov - Kalinin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Approximate symmetries of partial differential equations in viscoelasticity
Ruggieri - Speciale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

PMNP 2015 5



Two-dimensional superintegrable quantum systems with potentials expressed in terms of Painlevé
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Rational degenerations of m-curves and totally
positive Grassmannians

S. Abenda, P. Grinevich
University of Bologna (Italy)

Landau Institute of Theoretical Physics (Moscow)

In this talk I shall connect two areas of mathematics: the theory of totally
positive Grassmannians and the rational degenerations of m-curves using the
theory of the KP-2 equation. Thanks to recent papers by Kodama and Williams
[3, 4] the relation between the class of line soliton solutions of KP-2 equation and
the totally non-negative part of real finite dimensional Grassmannians is well
established. On the other hand such soliton solutions may also obtained from
the limit of regular real finite gap solutions of KP-2. Dubrovin and Natanzon [2]
proved in 1988 that the algebro-geometric data of the regular real quasi-periodic
solutions are associated to m-curves. We show how to associate to any point in
the totally positive part of Gr(N,M) the algebro-geometric data a la Krichever
[5] for the corresponding line soliton solution, i.e. the rational degeneration
of a regular m-curve of genus g = N(M − N) and the divisor of poles of the
associated KP wave-function. The results presented are in collaboration with
P.G. Grinevich [1].

References
[1] Abenda, S., Grinevich, P.G. “Rational degenerations of m-curves and totally

positive Grassmannians”, in press (2015).

[2] Dubrovin, B. A., Natanzon S. M., “Real theta-function solutions of the
Kadomtsev-Petviashvili equation”, Izv. Akad. Nauk SSSR Ser. Mat., 52:2
(1988), 267-286

[3] Kodama, Yuji; Williams, Lauren “The Deodhar decomposition of the Grass-
mannian and the regularity of KP solitons”, Adv. Math. 244 (2013), 979-1032

[4] Kodama, Yuji; Williams, Lauren “KP solitons and total positivity for the
Grassmannian”, Invent. Math. 198 (2014), no. 3, 637-699.

[5] Krichever, I. M., “An algebraic-geometric construction of the Zakharov-
Shabat equations and their periodic solutions”. (Russian) Dokl. Akad. Nauk
SSSR 227 (1976), no. 2, 291-294.

Talks Sunday, June 21 15:30-16:00 (Conference Room) Abenda
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Some tropical analogues of integrable equations
in (2+1) dimensions

L.V. Bogdanov and B.G. Konopelchenko
L.D. Landau ITP, Moscow, Russia

University of Salento and INFN, Lecce, Italy

We introduce some tropical analogues of integrable lattice equations, start-
ing from tropicalization of compatibility or consistency conditions. Examples
connected with KP hierarchy and Darboux equations are considered.

Talks Thursday, June 25 11:20-11:50 (Conference Room) Bogdanov
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Parabolic similaritons in optical fibres

C. Finot,1 S. Boscolo2
1Laboratoire Interdisciplinaire Carnot de Bourgogne,

UMR 6303, 21078 Dijon Cedex, France
2Aston Institute of Photonic Technologies,

Aston University, Birmingham B4 7ET, UK

Recent developments in nonlinear optics have brought to the fore of inten-
sive research an interesting class of pulses with a parabolic intensity profile and
a linear instantaneous frequency shift or chirp [1, 2]. Parabolic pulses prop-
agate in optical fibres with normal group-velocity dispersion in a self-similar
manner, holding certain relations (scaling) between pulse power, duration and
chirp parameter, and can tolerate strong nonlinearity without distortion or wave
breaking. These solutions, which have been dubbed similaritons, were demon-
strated theoretically and experimentally in fiber amplifiers in 2000 [3]. Simi-
laritons in fiber amplifiers are, along with solitons in passive fibres, the most
well-known classes of nonlinear attractors for pulse propagation in optical fibre
[3, 4], so they take on major fundamental importance. The unique properties
of parabolic similaritons have stimulated numerous applications in nonlinear
optics, ranging from ultrashort high-power pulse generation to highly coherent
continuum sources and to optical nonlinear processing of telecommunication
signals.

In this talk, we review the physics underlying the generation of parabolic
similaritons as well as recent results obtained in a wide range of experimental
configurations.

References
[1] J.M. Dudley, C. Finot, D.J. Richardson, G. Millot. Self-similarity in ultrafast

nonlinear optics. Nat. Phys. 3 (2007), 597–603.

[2] C. Finot, J.M. Dudley, B. Kibler, D.J. Richardson, G. Millot. Optical
parabolic pulse generation and applications. IEEE J. Quantum Electron.
45 (2009), 1482–1489.

[3] M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey. Self-
similar propagation and amplification of parabolic pulses in optical fibers.
Phys. Rev. Lett. 84 (2000), 6010–6013.

[4] S. Boscolo, S.K. Turitsyn, V.Y. Novokshenov, J.H.B. Nijhof. Self-similar
parabolic optical solitary waves. Theor. Math. Phys. 133 (2002), 1647–1656.

Talks Tuesday, June 23 17:20-17:50 (Conference Room) Boscolo
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Transformations from traveling wave solutions
to non-traveling wave solutions of evolution

equations

G.I. Burde
Ben-Gurion University of the Negev

Blaustein Institutes for Desert Research
Swiss Institute for Dryland Environmental and Energy Research

Studying properties of evolution equations arising in different physical con-
texts commonly starts from assuming the traveling wave (TW) solution form
which reduces the problem to an ordinary differential equation (ODE). A variety
of direct methods for finding such solutions have been designed but usually there
is no algorithmic way to proceed further from this stage. In the present study, a
method, which allows constructing non-traveling wave solutions of an evolution
equation from known traveling wave solutions, is developed and applied to some
types of equations. The method represents a generalization of a direct method
for defining solitary wave solutions of evolution equations developed and applied
to the higher order KdV-type equations in [1], [2] which allowed identifying new
types of solutions, such as the Generalized Kaup–Kupershmidt (GKK) solitons
[1] and static solitons [2]. In the present study, the modified procedure of the
method defines transformations from TW solutions of an evolution equation to
more general solutions of the same equation.

The procedure, as applied to an evolution equation in (x, t) variables, is
based on the Ansatz for solution in new variables with one of them being
the traveling wave argument ξ(x, t) and the second variable being a ’poten-
tial’ p(x, t) =

∫
u(x, t)dx where u(x, t) is the unknown solution. Having the

arbitrary functions of ξ contained in the Ansatz defined, the solution can be
determined by solving the first order quasilinear partial differential equation
for p(x, t). The desired transformations are obtained if some specific forms of
the Ansatz are assigned which results in that the functions of ξ contained in
the Ansatz are expressed through solutions of ODEs for TW solutions of the
evolution equation. Transformations to non-TW solutions are provided by the
solutions of the quasilinear equation for p(x, t).

The transformations can be naturally used for finding new solutions of a
given equation. Having the TW solutions (for example, solitary wave solutions)
defined in an explicit form, more general non-TW solutions can be also explic-
itly determined. However, the transformations are of interest in themselves as
they can give insight into some general properties of the equations. Even in the
widely studied case of the Korteweg– de Vries (KdV) equation, a new type of
transformations, which convert one-soliton solutions into two-soliton solutions,
is found. Such transformations can be used for construction of many-parameter
families of evolution equations possessing two-soliton solutions, in a way similar
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to that used in [3] for constructing families of equations possessing one-soliton
solutions. It allows to classify equations admitting two-soliton solutions, which
may, to some extent, be considered as candidates for integrable equations. An-
other example is the dual Sawada–Kotera (SK) and Kaup–Kupershmidt (KK)
equations. Transformations from traveling wave solutions of the SK equations
to non-traveling wave solutions of the KK equation and, vise versa, transforma-
tions from traveling wave equations of the KK equations to non-traveling wave
solutions of the SK equation can be defined. Such transformations are found
also for the mixed scaling weight KdV-KK and KdV-SK equations, with the
KdV flow included, which naturally arise in physical problems as a result of
extending an asymptotic expansion to higher orders.
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Finite-dimensional representations of shift
operators, remarkable matrices and matrix

functional equations

F. Calogero
Physics Department, University of Rome “La Sapienza”
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1

In this talk I plan to report—to the extent time will permit—quite recent
results. (i) The identification of (N ×N)-matrices providing finite-dimensional
representations of two types of "shift" operators, δ̌ (x) respectively δ̂ (y), acting
as follows on functions f (z) of the variable z, δ̌ (x) f (z) = f (x z) respectively
δ̂ (y) f (z) = f (z + y); representations which are exact—in a sense that shall
be explained—in the functional space spanned by polynomials of degree less
than (the arbitrary positive integer) N . [1] (ii). The identification of (N ×N)-
matrices which are explicitly expressed in terms of N arbitrary numbers or in
terms of the N zeros of named polynomials of degree N and which feature
remarkable properties, such as eigenvalues which are explicitly known and have
Diophantine characteristics. [1] (iii). The identification of matrix functional
equations, such as, for instance, G (y) F (x) = F (x) G (x y)—where, here
and below, F (x) respectively G (y) are (N ×N)-matrix-valued functions of the
scalar variables x respectively y—and of a class of nontrivial solutions of these
functional equations [2]; and likewise the pair of matrix functional equations
G (x) F (y) = G (xy) and G (x) G (y) = F (y/x) , which feature only the
altogether trivial solutions F (x) = G (y) = 0 and F (x) = G (y) = 1 in the
scalar (N = 1) case, but possess nontrivial solutions in the matrix (N > 1) case
[3].
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Bihamiltonian cohomology and deformations of
Poisson pencils of hydrodynamic type

G. Carlet
Korteweg - de Vries Institute for Mathematics

We review our recent results [1, 2, 3], in collaboration with H. Posthuma and
S. Shadrin, on the computation of the bihamiltonian cohomologies of Poisson
pencils of hydrodynamic type.

First we recall the necessary background and the main motivation for our
work. We consider the problem of the deformation of the compatible Poisson
brackets for the class of bihamiltonian integrable hierarchies of PDEs which ad-
mit hydrodynamic limit. In particular we consider the KdV case, the general
scalar case and the generic case of semisimple Poisson pencils with n depen-
dent variables. This deformation problem is governed by certain bihamiltonian
cohomology groups.

Then we show how to compute the bihamiltonian cohomology groups in
some of the cases considered above. In particular we show the vanishing of the
third bihamiltonian cohomology in the generic n-dimensional case by introduc-
ing certain filtrations on a related differential complex from which the vanishing
of the first page of the associated spectral sequence follows. It follows that
the extension of an infinitesimal deformation to a full dispersive deformation is
unobstructed.
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Poisson cohomology of scalar multidimensional
Dubrovin–Novikov brackets

G. Carlet, M. Casati, S. Shadrin
KdV Institut voor Wiskunde, Universiteit van Amsterdam
Scuola Internazionale Superiore di Studi Avanzati (Trieste)
KdV Institut voor Wiskunde, Universiteit van Amsterdam

This contribution presents some results in the classification of dispersive de-
formations of the multidimensional Dubrovin–Novikov (DN) Poisson brackets
[1]. DN brackets are Poisson structures on the space of local functionals, where
the densities are functions from a D–dimensional to a N–dimensional manifold.
They were introduced as a generalization of the Poisson brackets of hydrody-
namic type, as suitable structure to define D+1 dimensional Hamiltonian PDEs
[2].

In analogy with the Poisson geometry of finite dimensional manifolds, we
can regard DN brackets as being defined by a Poisson bivector on an infinite
dimensional manifold; moreover, we can use such a bivector to define the Lich-
nerowicz cochain complex of (local) p-vectors. For the case D = 1, Ezra Getzler
proved that all the positive cohomology groups of the complex vanish [3]. In
particular, that means that all the dispersive deformations of the brackets are
trivial, i.e. they are generated by a Miura transformation of the undeformed
bracket.

The triviality, up to the first order, of some cohomology groups for D =
N = 2 has recently been proved by direct computation [4]. In this contribution,
we focus on the scalar brackets (N = 1) and prove, using methods from homo-
logical algebra, that the cohomology groups are in general non trivial, deriving
in particular a direct formula for the dimension of the cohomolgy groups when
D = 2.

First, we show that the Poisson–Lichnerowicz complex of a scalarD-dimensional
bracket is isomorphic to the one of the bracket

{u(x1, . . . , xD), u(y1, . . . , yD)} = ∂

∂xD
δ(x− y),

then we study the cohomology of that complex on the densities of local p-vectors.
We denote Hp

d (Â) the homogeneous componentes of the cohomology groups,
where p is the grading in the cochain complex and d the order of the differential
polynomials that are elements of Â. Finally, by an exact sequence argument we
get Hp

d (F̂), namely the cohomology groups on the space of p-vector, which is
defined by the formal integration

F̂ =
Â

∂x1Â+ ∂x2Â+ · · ·+ ∂xDÂ
.
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Hurwitz numbers, Belyi pairs, Grothendieck
dessins d’enfant, and matrix models

J. Ambjørn, L.O. Chekhov
Niels Bohr Institute, University of Copenhagen

Steklov Mathematical Inst., Moscow, and QGM, Aarhus

Belyi pairs are functions mapping Riemann surfaces of genus g on the com-
plex projective line with branchings at a fixed number of points (at three points
for the case of original Belyi pairs and Grothendieck’s dessins d’enfant corre-
sponding to these pairs).

We begin by construct the matrix model describing the case of three branch-
ing points ([1]) passing then to more general models describing the case of n
branching points ([2]). All these models are tau functions of the KP hierarchy
and upon some constraints on their generating functions their solutions can be
attained using the topological recursion technique.

Namely, we show that the case of n branching points is described by the
matrix model represented by an integral over a chain of Hermitian matrices

∫ n−1∏

i=1

DHi e
−N tr[V (H1)+(β−γ) logH2+γH1H

−1
2 +γH2H

−1
3 +···+γHn−2H

−1
n−1+U(Hn−1)],

whose free energy is the generating function for Hurwitz numbers with ramifi-
cation profiles specified at the first and the last, nth, ramification points and
encoded in the two potentials V (H1) and U(Hn−1), the weight also segregate
the third ramification point whose profile µ contributes the factor βl(µ2) whereas
the remaining n−3 points come with the same constants γl(µk), k = 3, . . . , n−2.

These new matrix chains manifest braid-group symmetries and conjecturally
can be related to the effective Yang–MIlls theories in the strong-coupling limit
(or to special quantum Toda chains).
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Binary Darboux Transformations in
Bidifferential Calculus

O. Chvartatskyi1,2, A. Dimakis3, F. Müller-Hoissen1

1Max Planck Institute for Dynamics and Self-Organization,
37077 Göttingen, Germany

2Mathematisches Institut, Georg-August-Universität Göttingen,
37073 Göttingen, Germany

Department of Financial and Management Engineering,
University of the Aegean, 82100 Chios, Greece

We investigate the ’Miura equation’

d̄g + (dφ) g = 0, (1)

where d and d̄ are derivations acting from an associative algebra A into A-
bimodule Ω1. For (1) there exists a universal (for any choice of d and d̄) solu-
tion generating method [1, 2], which is an abstract version of Binary Darboux
Transformations.

If derivations d and d̄ extend to maps A d,d̄→ Ω1 d,d̄→ Ω2, with another A-
bimodule Ω2 such that d2 = d̄2 = dd̄ + d̄d = 0, then (1) implies

dd̄φ+ dφ dφ = 0, d [(d̄g) g−1] = 0. (2)

Depending on the choice of bidifferential calculi (d, d̄, A, Ω1, Ω2), from (2) one
recovers differential and difference integrable systems, including two versions of
the self-dual Yang-Mills equation, matrix two dimensional Toda lattice, matrix
Hirota-Miwa (Hirota bilinear difference equation), (2+1)-dimensional NLS, KP
and Davey-Stewartson equations. Elaborating the main theorem from [2] we
construct families of solutions of the latter systems. In case of the KP-I equation
and the DS system we obtain multiple pole lumps [3,4] and soliton and dromion
solutions [5,6] respectively. We also address the respective matrix counterparts.

This talk is based on joint work with A. Dimakis and F. Müller-Hoissen.
O.C. is supported by a postdoctoral fellowship of the Alexander von Hum-

boldt foundation.
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Metrisability of projective structures and
integrability of particular 2nd order ODEs

M. Dunajski, F. Contatto
DAMTP, University of Cambridge, UK

DAMTP, University of Cambridge, UK and CAPES Foundation, Brazil

30 March 2015

Consider the set of affine torsion-free connections on an n-dimensional simply-
connected smooth orientable manifold M . We define the following equivalence
relation: two connections Γ and Γ̂ are projectively equivalent if they share the
same umparametrised geodesics. A projective structure is an equivalence class of
such equivalence relation. Therefore, a projective structure can be defined from
each umparametrised geodesic equation on a manifold, once local coordinates
are chosen.

We will be particularly interested in the 2-dimensional problem [1], whose
main ideas generalise almost immediately to higher dimensions. By choosing
local coordinates (x, y), every umparametrised geodesic equation is of the form

y′′ = A3(x, y)y′3 +A2(x, y)y′2 +A1(x, y)y′ +A0(x, y),

where we have considered x as the independent variable, or y = y(x). The
projective structure can be read off from the coefficient functions Ai(x, y).

In this talk, we shall explain how one can find first integrals of a second order
ODE of the above form by solving a relatively simple problem of metrisability
of the corresponding projective structure. To illustrate this, recall that the
existence of a Killing vector imply the existence of conserved quantities along
geodesics, which will immediately give rise to a first integral of the umpara-
metrised equation under the Hamiltonian picture. However, the existence a
Killing vector does not cover the general case. In fact, we will show that when-
ever there are more than one metric giving rise to the same umparametrised
geodesic equation, we can construct a first integral. The presence of Killing
vector corresponds to a particular case: the existence of degenerate solutions
of the metrisability problem, i.e., to the existence of a symmetric 2-form with
vanishing determinant, which does not define a metric.

We illustrate the efficiency of this technique by studying the integrability of
the six Painlevé equations, which are ODEs of the above form depending on 4
parameters, usually denoted by α, . . . , δ. It turns out that their corresponding
projective structures are metrisable for well-known values of these parameters:
those for which the Painlevé equations are fully integrable.
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Quartics, sextics, and beyond

M. Dunajski , R. Penrose,
University of Cambridge, Oxford University

I will review the 19th century classical invariant theory of Cayley and Sylvester,
and present a solution of an outstanding open problem concerning binary sex-
tics. This is joint work with Roger Penrose.
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New developments in the Hamiltonian reduction
approach to integrable many-body systems

L. Fehér
University of Szeged and Wigner RCP, Budapest, Hungary

The aim of this talk is to review our recent results about the construction
of classical integrable systems of Calogero-Moser-Sutherland type in the setting
of Hamiltonian reduction. The basic idea behind this approach is that many
interesting systems can be viewed as “shadows” of canonical free systems having
rich symmetries on higher dimensional phase spaces. The master phase spaces
include, e.g., cotangent bundles of finite-dimensional Lie algebras and Lie groups
together with their Poisson-Lie symmetric deformations and affine analogues.
Here we shall focus on generalizations of the derivation of the trigonometric
Sutherland system due to Kazhdan-Kostant and Sternberg [1].

We shall first explain how a large family of generalized spin Sutherland
systems can be obtained from two different parent systems, namely, from free
motion either on a finite-dimensional compact simple Lie group or on an infinite-
dimensional current algebra [2]. We shall then recall the derivation of the hyper-
bolic and trigonometric BCn Sutherland systems by means of reduction of free
motion on the groups SU(n, n) and SU(2n), respectively. Finally, novel results
on Ruijsenaars type deformations of these systems will be presented [3, 4].
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On the integrability in Grassmann geometries:
integrable systems associated with fourfolds in

Gr(3, 5)

E Ferapontov
Department of Mathematical Sciences

Loughborough University
Loughborough, Leicestershire LE11 3TU, UK

E.V.Ferapontov@lboro.ac.uk

The talk is based on joint work with B Doubrov, B Kruglikov and V Novikov.

We investigate a class of dispersionless integrable systems in 3D associated
with fourfolds in the Grassmannian Gr(3, 5), revealing a remarkable correspon-
dence with Einstein-Weyl geometry and the theory of GL(2, R) structures. Gen-
eralisations to higher dimensions are also discussed.
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Towards a classification of the solutions
to the NLS equation.

P. Gaillard,
Institut de Mathématiques de Bourgogne,

Université de Bourgogne,
Faculté des Sciences Mirande,

9 avenue Alain Savary BP 47870
21078 Dijon Cedex, France :

E-mail : Pierre.Gaillard@u-bourgogne.fr

Abstract

The solutions to the one dimensional focusing nonlinear Schrödinger
equation (NLS) are given in terms of wronskians [1]; a degenerate rep-
resentation gives solutions in terms of determinants of order 2N for any
nonnegative integer N [2]. They can be written as a product of an expo-
nential depending on t by a quotient of two polynomials of degreeN(N+1)
in x and t depending on 2N − 2 parameters [3]. It is remarkable to stress
that when all the parameters of this representation are equal to 0, we
recover the famous Peregrine breathers PN ; these solutions appear as de-
formations of PN breathers whose the maximum of the modulus is equal to
2N+1 [4]. An attempt of classification of the solutions is given and several
conjectures about the structure of the solutions are also formulated.
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Complete integrability of Nonlocal Nonlinear
Schrödinger equation

V. S. Gerdjikov∗, A. Saxena∗∗
∗Institute of Nuclear Research and Nuclear Energy,

Bulgarian Academy of Sciences,
72 Tsarigradsko chausee, Sofia 1784, Bulgaria

∗∗Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545 USA

We start with the generic AKNS system

Lψ ≡ idψ
dx

+ (q(x, t)− λσ3)ψ(x, t, λ) = 0, q(x, t) =

(
0 q+
q− 0

)
, (1)

whose potential q(x, t) belongs to the class of smooth functions vanishing fast
enough for x → ±∞. By generic here we mean that the complex-valued func-
tions q+(x, t) and q−(x, t) are independent. Using L as a Lax operator we can
integrate a system of two equations for q+(x, t) and q−(x, t) generalizing the
famous NLS equation (GNLS). After the reduction q+(x, t) = q∗−(x, t), this
system reduces to the NLS equation; applying different ‘nonlocal’ reduction
q+(x, t) = εq∗−(−x, t) = u(x, t), ε2 = 1 we obtain the nonlocal NLS [1]:

i
∂u

∂t
+

1

2

∂2u

∂x2
+ εu2(x, t)u∗(−x, t) = 0. (2)

which also finds physical applications.
We prove that the ‘squared solutions’ of (2) form complete set of functions

thus generalizing the results of [2, 3], see also [4]. Then, using the expansions of
q(x, t) and σ3qt(x, t) over the ‘squared solutions’ we extend the interpretation
of the inverse scattering method as a generalized Fourier transform also to the
nonlinear evolution equations related to L. Next, following [3] we introduce a
symplectic basis, which also satisfies the completeness relation and denote by
δη(λ) and δκ(λ, t) the expansion coefficients of σ3δqt over it. If we consider
the special class of variations σ3δq(x) ' σ3qtδt then the expansion coefficients
δη(λ) ' ηtδt and δκ(λ, t) ' κtδt. If q(x, t) is a solution to the GNLS system we
get:

∂η(λ)

∂t
= 0,

∂κ(λ, t)

∂t
= 2λ2,

i.e. the variables η(λ) and κ(λ, t) may ne understood as the action-angle vari-
ables for the generalized NLS system.

Finally, if we apply the local involution q+(x, t) = q∗−(x, t) = u(x, t) we
recover the well known action-angle variables of the NLS equation. If we apply
the nonlocal involution q+(x, t) = q∗−(−x, t) = u(x, t) we obtain the action-angle
variables of the nonlocal NLS (2) in terms of the scattering data of L.
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On Integrable Discretisations for
Grassmann-Extended NLS Equations:

Darboux Transformations and Yang-Baxter
Maps

G. G. Grahovski (1), S. G. Konstantinou-Rizos (2), A. V. Mikhailov (3)

(1) Department of Mathematical Sciences, University of Essex, UK
(2) Faculty of Mathematics and Technology, Chechen State University, Russia

(3) Department of Applied Mathematics, University of Leeds, UK

Integrable discretisations for a class of coupled nonlinear Schrödinger (NLS)
type of equations are presented. The class corresponds to a Lax operator with
entries in a Grassmann algebra. Elementary Darboux transformations are con-
structed. As a result, Grassmann generalisations of the Toda lattice and the
NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of
these Darboux transformations leads to integrable Grassmann generalisations
of the difference Toda and NLS equations. The resulting discrete systems will
have Lax pairs provided by the set of two consistent Darboux transformations.

Finally, Yang-Baxter maps for the Grassmann-extended NLS equation will
be presentes. In particular, we present ten-dimensional maps which can be re-
stricted to eight-dimensional Yang-Baxter maps on invariant leaves, related to
the Grassmann-extended NLS and DNLS equations. Their Liouville integrabil-
ity will be briefly discussed.
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Generalized symmetries in the soliton surfaces
approach

A.M. Grundland, S. Post, D. Riglioni
Université du Québec a Trois-Rivieres and

Centre de Recherches Mathématiques, Université de Montréal
University of Hawaii

Universita degli Studi Roma Tre

In this talk, some features of generalized symmetries of integrable systems
will be discussed in order to construct the Fokas-Gelfand formula for the immer-
sion of two-dimensional soliton surfaces in Lie algebras. The sufficient condi-
tions for the applicability of this formula will be established. Further, a criterion
for the selection of generalized symmetries suitable for their use in the Fokas-
Gelfand immersion formula will be provided. Finally, some examples of their
application will be included.
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On quad equations consistent on the cube

G. Gubbiotti, D. Levi and C. Scimiterna
Dipartimento di Matematica e Fisica – Università degli Studi Roma Tre

and
INFN Sezione Roma Tre

Since its introduction [5] the consistency around a cube have been used as a
powerful tool for identifying integrable lattice equations defined on the square
and finding new ones [1, 2, 3]. The definitive step in the classifications of the
systems consistent on the cube have been done in [4]. In this work we review
the basis of the consistency around the cube, give a complete account on how
we can embed a quad equation defined on the elementary square into a lattice
non-autonomous system [8].
Some examples are explicitly discussed using their algebraic entropy [6, 7] prop-
erties.

References
[1] V. E. Adler, A. I. Bobenko, and Y. B. Suris. Classification of integrable

equations on quad-graphs. the consistency approach. Comm. Math. Phys.,
233:513–543, 2003.

[2] V. E. Adler, A. I. Bobenko, and Y. B. Suris. Discrete nonlinear hyperbolic
equations. classification of integrable cases. Funct. Anal. Apll., 43:3–17,
2009.

[3] V. E. Adler, A. I. Bobenko, and Y. B. Suris. Classification of the integrable
discrete equations of the octahedron type. Intern. Math. Research Notices,
60:363–401, 2011.

[4] R. Boll. Classification of 3D consistent quad-equations. J. Nonlinear Math.
Phys., 18(3):337–365, 2011.

[5] F. W. Nijohf and A. J. Walker. The discrete and continous Painlevè VI
hierarchy and the Garnier systems. Glasg. Math. J., 43A:109–123, 2001.

[6] S. Tremblay, B. Grammaticos, and A. Ramani. Integrable lattice equations
and their growth properties. Phys. Lett. A, 278(6):319–324, 2001.

[7] C. Viallet. Algebraic Entropy for lattice equations. arXiv:math-ph/0609043

[8] P. D. Xenitidis and V. G. Papageorgiou. Symmetries and integrability of
discrete equations defined on a black–white lattice. J. Phys. A: Math. Theor.,
42(35):454025, 2009.

Talks Tuesday, June 23 12:20-12:50 (Conference Room) Gubbiotti

PMNP 2015 30



The method of lambda-brackets in the theory of
integrable Hamiltonian PDE

V. Kac
Department of Mathematics, MIT, USA

Successes of the method of lambda-brackets include:

1. Classification of scalar Hamiltonian operators (=Poisson structures)

2. Computation of variational Poisson cohomology

3. General classical Hamiltonian reduction for PDE and generalized Drinfeld-
Sokolov hierarches

4. Progress in Adler-Gelfand-Dickey theory

5. The theory of non-local Poisson structures

6. General Dirac reduction theory in the infinite-dimensional case

7. Progress in non-commutative Hamiltonian PDE.

I will explain some of this work, joint with A. De Sole, D. Valeri, and M.
Wakimoto.
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On 2+1 - dimensional cKdV-type equation for
internal ring waves on a shear flow

K. Khusnutdinova, X. Zhang
Department of Mathematical Sciences, Loughborough University,

Loughborough LE11 3TU, UK

Oceanic waves registered by satellite observations often have curvilinear
fronts and propagate over various currents. We study long linear and weakly -
nonlinear ring waves in a stratified fluid in the presence of a depth-dependent
horizontal shear flow, generalising the results obtained in [1, 2, 3]. It is shown
that despite the clashing geometries of the waves and the shear flow, there ex-
ists a linear modal decomposition (different from the known decomposition in
Cartesian geometry), which can be used to describe distortion of the wavefronts
of surface and internal waves, and systematically derive a 2+1 - dimensional
cylindrical Korteweg - de Vries - type equation for the amplitudes of the waves
[4]. The general theory is applied to the case of the waves in a two-layer fluid
with a piecewise - constant shear flow, with an emphasis on the effect of the
shear flow on the geometry of the wavefronts. The distortion of the wavefronts
is described by the singular solution (envelope of the general solution) of the
nonlinear first-order differential equation, constituting generalisation of the dis-
persion relation in this curvilinear geometry. There exists a striking difference
in the shape of the wavefronts of surface and interfacial waves propagating over
the same shear flow.
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Regular triangulations of point sets and solitons
in two dimensions

Y. Kodama
Department of Mathematics

The Ohio State University, Columbus (OH, USA)

We give an explicit connection between two-dimensional patterns generated
by soliton solutions (also obtained by hyperplane arrangements in a tropical
limit of the τ -function) and triangulations (subdivisions) of point sets deter-
mined by polygons inscribed in conic curves. Two dimensional integrable sys-
tems admitting those soliton solutions include the KP equation (for parabola),
two-dimensional Toda lattice (for hyperbola) and the Davey-Stewartson systems
(for ellipse).

The talk will be based on the thesis of my student, Jihui Huang, which will
be completed soon.
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Symmetry reductions
of Lax integrable 3D systems

H. Baran, I. Krasil′shchik, O. Morozov, P. Vojčák
Mathematical Institute, Silesian University in Opava

Independent University of Moscow
AGH University of Science and Technology, Kraków
Mathematical Institute, Silesian University in Opava

We give a complete description of symmetry reductions for the following
3D Lax integrable (i.e., admitting a ZCR with a non-removable parameter)
equations:

the Pavlov equation uyy = utx + uyuxx − uxuxy, (1)
the 3D rdDym equation uty = uxuxy − uyuxx, (2)
the universal hierarchy equation uyy = uzuxy − uyuxz (3)

(see [1] and references therein). The result comprised more than 30 equa-
tions, but the majority of them were either exactly solvable or linearized by
the generalized Legendre transformations. Nevertheless, there were 10 ‘inter-
esting’ reductions, among which two well known equations, i.e., the Liouville1
and Gibbons-Tsarev equations. The rest nine can be divided in two groups by
their symmetry properties: five equations admit infinite-dimensional Lie alge-
bras of contact symmetries (with functional parameters) and four others possess
finite-dimensional symmetry algebras. The integrability properties of these four
equations were studied in [2] and the main results are as follows.

Equation (1) admits the covering

qt = (q2 − qux − uy)qx, qy = (q − ux)qx.

The symmetry ϕ1 = ut−2xux−yuy+3u lifts to this covering and the reduction
leads to the equation

vηη = (vη + 2ξ)vξξ − (vξ − η)vξη − vξ (4)

and the covering

wξ =
−w

w2 − (vξ + η)w + ηvξ − vη − 2ξ
, wη =

−w(w − vξ)
w2 − (vξ + η)w + ηvξ − vη − 2ξ

.

The reduction with respect to the symmetry ϕ2 = ut − yux + 2x leads to the
equation

vηη = (vη + η)vξξ − vξvξη − 2 (5)
1Which is also linearizable by a well known differential substitution and is not considered

below.
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with the covering

wξ =
−1

w2 − vξw − vη − η
, wη =

vξ − w
w2 − vξw − vη − η

By the change of variable v 7→ v − η2/2 Equation (5) reduces to the Gibbons-
Tsarev equation, while the covering becomes the well known nonlinear Lax pair
of this equation.

Equation (2) admits the covering

qt = (ux + q)qx, qy = −uyqx
q

.

The symmetry ϕ = ut − xux − uy + 2u can be prolonged to a symmetry of the
covering and as the result of ϕ-reduction we obtain the equation

vηη = (vξ − ξ)vξη − vη(vξξ − 2) (6)

with the covering

wξ =
−w2

w2 + (vξ − ξ)w + vη
, wη =

vηw

w2 + (vξ − ξ)w + vη
.

Finally, Equation (3) admits the covering

qz =
(quz − uy)qx

q2
, qy =

uyqx
q

and the reduction with respect to the symmetry ϕ = uz+ux+yuy+u prolonged
to the covering leads to the equation

vηη = vηvξξ − (vξ + v)vξη + vξvψ (7)

with the covering

wξ =
−w3

w2 − (vξ + v)w − vη
, wη =

−vηw2

w2 − (vξ + v)w − vη
.

Equations (4)–(6) are pair-wise inequivalent with respect to contact trans-
formation.

Using the standard reversal procedure, i.e., passing from a one-dimensional
covering

wξ = X(ξ, η, v, vξ, vη, w), wη = Y (ξ, η, v, vξ, vη, w)

to the infinite-dimensional covering

ψξ = −X(ξ, η, v, vξ, vη, λ)ψλ, ψη = −Y (ξ, η, v, vξ, vη, λ)ψλ, (8)

and expanding (8) in formal Laurent series in λ, we constructed infinite hierar-
chies of nonlocal conservation laws for Equations (4)–(6).
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Self-Duality and Symmetric Deformations
of Integrable PDE

B. Kruglikov
University of Tromsø

It is widely known that many integrable dispersionless PDE in 3D and 4D
can be obtained as reductions of Einstein-Weyl (EW) and Self-Duality (SD)
equations respectively for conformal structures in 3D and 4D; these latter are
in turn integrable by the twistor theory methods [3, 5]. In the joint work with
Eugene Ferapontov [2] we made this observation into a sequence of theorems
for some classes of differential equations.

We will discuss these results and some of their generalizations. The EW
and SD equations have Lax pair formulations, which were made explicit in a
recent paper by Maciej Dunajski, Eugene Ferapontov and the author [1]. We
will briefly discuss some of the forms of these master-equations.

The EW/SD check is very algorithmic and thus is useful in verifying inte-
grability of dispersionless PDE. In particular, given an ansatz for deformation
of a known (model) integrable equation, we can classify integrable PDE among
them. Deformations of the second starting from the heavenly-type equations in
4D were recently classified in a joint work with Oleg Morozov [4]. These provide
some (new) infinite families of integrable PDE (with interesting moduli spaces).
We will report on these and further results.
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Tetrahedron equation and generalized quantum
groups

A. Kuniba
Institute of Physics, University of Tokyo, Komaba

In quantum integrable systems in three dimension (3D), an important role
is played by the Zamolodchikov tetrahedron equation and the Isaev-Kulish 3D
reflection equation:

R356R246R145R123 = R123R145R246R356,

R456R489K3579R269R258K1678K1234 = K1234K1678R258R269K3579R489R456.

They are equalities among linear operators acting on the tensor product of 6
and 9 vector spaces respectively, and the indices specify the components on
which the operators R and K act nontrivially. They serve as 3D analogue of
the Yang-Baxter and the reflection equations postulating certain factorization
conditions on straight strings which undergo the scattering R and the reflection
K by a boundary plane.

I shall survey the recent developments on these systems of equations and
related quantum group theoretical aspects. They include the quantized algebra
of functions Aq(g) on classical simple Lie algebra g, classification of irreducible
Aq-modules (Soibelman 1991), intertwiners of the Aq-modules as a solution to
the tetrahedron equation (Kapranov-Voevodsky 1994), the first nontrivial so-
lutions to the 3D reflection equation [1], identification of the intertwiners with
transition matrices of the PBW bases of the positive part of the quantized uni-
versal enveloping algebra Uq(g) for general g [2], reduction of the tetrahedron
equation to the Yang-Baxter equation producing quantum R matrices for fam-
ilies of generalized quantum groups extrapolating a number of quantum affine
algebras and their q-oscillator representations [3].
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Fermi-Pasta-Ulam recurrence and modulation
instability

E.A. Kuznetsov
P.N. Lebedev Physical Institute

53 Leninsky Ave., 119991 Moscow, Russia;
Novosibirsk State University

2 Pirogova, 630090 Novosibirsk, Russia

The phenomenon of recurrence in nonlinear systems with many degrees of
freedom was first observed in numerical experiment by Fermi, Pasta and Ulam
in 1954. The idea of Fermi was to ascertain how randomization due to the
nonlinear interaction leads to the energy equipartition between large number of
degrees of freedom in the mechanical chain. The length of the chain achieved
N = 64 oscillators with quadratic nonlinearity and long-wave initial conditions
were used. Instead of the energy equipartition numerics showed after some def-
inite time recurrence to the initial data accompanied by a quasi-periodic energy
exchange between several initially exited modes. Since that time this problem
became known as the Fermi-Pasta-Ulam (FPU) problem and was one of the
most attractive subjects for numerous investigations. Later, mainly by efforts
of N. Zabusky, these results were repeated by means of more powerful comput-
ers. Besides, there were observed many other peculiarities in this problem (for
details see the original papers of Zabusky & Kruskal (1965), Deem & Zabusky
(1967)). It was a time of forerunner of the era of integrability for nonlinear
systems.

Since the discovery of the IST for the KDV by Gardner, Greene, Kruskal &
Miura (1967), and later for the NLS by Zakharov & Shabat (1972), many aspects
of the FPU recurrence became more clear. In 1971 Zakharov and Faddeev
proved that the KDV equation, which, in particular, can be obtained from
the FPU system in the continuous limit for waves propagated in one direction,
represents completely integrable Hamiltonian system. Later, in 1974 Zakharov
demonstrated that the Boussinesq equation which can be considered as the
direct continuous limit for the FPU system also belongs to the systems integrable
by the IST. According to Zakharov (1974) the long-time randomization for the
FPU system can be explained by the "distance" of that system to the nearest
fully integrable one. In this case its dynamics will follow in accordance with
the nearest integrable system up to the moment when the deviation from the
integrable trajectory can change up to the order of 1 and this time can be taken
as an estimate randomization time.

In this paper we give qualitative arguments to explain the FPU analog for the
NLS. Analytically there are known a lot of exact solutions (Kuznetsov (1977),
Peregrine (1983), Akhmediev, Eleonsky & Kulagin (1985), Zakharov & Gelash
(2012, 2013), etc.) which show the recurrence of the condensate solution after
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interaction with solitons. After leaving solitons the condensate recovers with
the same amplitude but has a different phase. This is the analog of the FPU
recurrence for the NLS.

The NLS equation, as well known, has a simplest stationary solution in the
form of the so-called cnoidal wave. This solution can be expressed in terms of
the elliptic Weierstrass function which can be represented as the infinite periodic
lattice of solitons (see, e.g. [1]). When the lattice period tends to infinity this
solution yields the one-soliton solution of the NLS. In another limit the cnoidal
wave transforms into the condensate solution with ψ = const. The condensate is
unstable relative to the modulation instability, also known as the Benjamin-Feir
instability. The same statement about instability is also valid for the cnoidal
wave [2]. The growth rate in this case can be found exactly by means of the
dressing procedure and expressed in terms of Weierstrass σ and ζ functions.
When the distance between solitons becomes large enough the maximal growth
rate turns out to be exponentially small so that in the limit of infinite period
it gives stability for one-soliton solution. However, the linear theory can not
provide the FSU recurrence. It can be understood within a nonlinear theory
only.

As known, the phase space of the NLS as an integrable Hamiltonian system
consists of discrete number of solitons and non-soliton (continuous) part. Ac-
cording to Zakharov and Shabat the interaction between solitons is elastic and
pairing. For scattering of two solitons it results in changes only of two soliton
parameters, i.e. coordinates of center of mass and phases. The cnoidal wave is
of the form of the soliton lattice. Therefore any soliton from the lattice after
interaction with a soliton propagating along the cnoidal wave will undergo the
same shift for its center of mass and phase. This means that after scattering of
the propagating soliton with the lattice the cnoidal wave will restore its previous
form, up to definite spatial and phase shifts. Evidently, the same statement will
be valid for condensate as the partial solution of the cnoidal wave. The interac-
tion of condensate with any soliton after its propagation will restore amplitude
of the condensate but its phase will be different. Scattering of a soliton with the
nonsoliton part also remains the soliton form with a change of center of mass of
the soliton and its phase. Thus, the cnoidal wave undergoing by the modulation
instability, at the nonlinear stage, should recover its form getting some phase
and spatial shifts. This is the qualitative explanation of the FSU recurrence
for the cnoidal wave and for the condensate, in particular. It is necessary to
underline that the same phenomenon takes place for the KDV cnoidal wave that
was found by Kuznetsov & Mikhailov in 1974 [1].

This work was supported by the RSF (Grant No. 14-22-00174).
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Domain shape dependence of semiclassical
corrections to energy

G. Kwiatkowski
Gdansk Univesity of Technology

As was shown in various works [1, 2], a number of dimensions accounted for in
the classical system has notable impact on quantum corrections to the energy
of its solutions. In this contribution stationary solutions of one-dimensional
Sine-Gordon and φ4 systems are embedded in a multidimensional theory with
explicitly finite domain in the added dimensions

S(ψ, T ) = Tad−2G
∫ 1

0

∫

D

(
1

2c2

(
∂ψ

∂t

)2

− 1

2

d∑

n=1

(
∂ψ

∂xn

)2

− V (ψ)

)
d∏

n=1

dxndt

(1)
with T and a as scaling parameters for time and space variables respectively,
G carrying all relevant physical constants, D as the spatial domain, c as linear
wave propagation speed in the dimensionless variables used, d being the total
number of spatial dimensions included, V (ψ) = m2(1− cos2(ψ)) in case of Sine-
Gordon and V (ψ) = −m2ψ2 + m2

v2 ψ
4 in case of φ4 system. Energy corrections

are calculated using zeta-function regularisation [1]

∆E = − h̄

iT
lim
s→0+

∂

∂s

1

Γ(s)

∫ ∞

0

τs−1
∫

[0,1]×D
(gL(τ,−→x ,−→x )− gL0

(τ,−→x ,−→x ))d−→x dτ,
(2)

where −→x covers all variables of the classical system including time whereas gL
and gL0 are Green functions solving

(
∂

∂τ
−A

(
1

c2
∂2

∂t2
−∆ +

d2V

dψ2
(ϕ)

))
g(τ,−→x ,−→x 0) = δ(τ)δ(−→x −−→x 0) (3)

with A as an imaginary constant resulting from the derivation of semiclassical
corrections and ϕ being the classical solution considered (in case of gL) or the
vacuum solution (in case of gL0

).
Most publications on the subject used continuum approximation for the

spectral problems in the dimensions added to the given system (see [1, 2, 3]),
which meant that the specific geometries of researched physical situations were
largely unaccounted for. In this contribution a more in-depth treatment of the
problem is sought and energy corrections are analytically calculated for a class
of specific geometries with emphasis on the effects of shape and scale of the
physical system on the corrections.
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Discretizing the Liouville equation

D. Levi
Dipartimento di Matematica e Fisica, Università Roma Tre

L. Martina
Dipartimento di Matematica e Fisica,

Università del Salento
P. Winternitz

Dipartimento di Matematica e Fisica, Università Roma Tre
and CRM, Université de Montréal

The main purpose of this presentation is to show how structure reflected in
partial differential equations can be preserved in a discrete world and reflected
in difference schemes.

The Liouville equation is the simplest periodic reduction of the integrable
two dimensional Toda lattice (two continuous and one discrete variable) and is
known to be linearizable by a transformation to the wave equation.

Three different structure preserving discretizations of the Liouville equation
are presented here and then used to solve specific boundary value problems.
The results are compared with exact solutions satisfying the same boundary
conditions. All three discretizations are on four point lattices. One preserves
linearizability of the equation, another the infinite dimensional symmetry group
as higher symmetries, the third preserves the maximal finite dimensional sub-
group of the symmetry group as point symmetries. A 9-point invariant scheme
that gives a better approximation of the equation, but worse numerical results
for solutions is presented and discussed.
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Higher Spin Lifshitz Theories and the
KdV-Hierarchy

M. Beccariaa, M. Gutperleb, Y. Lib, G. Macorinia
aDipartimento di Matematica e Fisica,

Universitá del Salento & INFN, Lecce, Italy
bDepartment of Physics and Astronomy,

University of California, Los Angeles, USA

In this work [1] three dimensional higher spin theories in Chern-Simons for-
mulation with Lifshitz symmetry of scaling exponent z and the gauge algebra
SL(N,R) are investigated. We show that an explicit map exists for all z and
N mapping the Lifshitz Chern-Simons theory to the (n,m) element of the KdV
hierarchy. Furthermore we show that the map and hence the conserved charges
are independent of z. We derive these result from the Drinfeld-Sokolov formal-
ism of integrable systems.

References
[1] M. Beccaria, M. Gutperle, Y. Li and G. Macorini, arXiv:1504.06555 [hep-th].

Talks Friday, June 26 11:20-11:50 (Conference Room) Macorini

PMNP 2015 44



Haantjes manifolds and Veselov systems

F. Magri
University of Milano Bicocca

Haantjes manifolds are a mild generalization of bihamiltonian manifolds.
They are of interest because they are the natural setting where to define a
Lenard complex. A Lenard complex on a Haantjes manifold is a triple (X, θ,Kj),
whereX is a vector field on the manifoldM , θ is a 1-form, andKj are commuting
tensor fields of type (1, 1), in number equal to the dimension of the manifold.By
acting on X and θ, the recursion operators Kj define a Lenard chain of vector
fields Xj = KjX and a Lenard square of 1-forms θjm = KjKmθ. The triple
(X, θ,Kj) is a Lenard complex if the vector fields Xj commute in pairs and
define a basis on TM ,and if the 1-forms θjm are exact. Lenard complexes are
ubiquitous in the theory of integrable systems. In the talk I plan to exhibit the
Lenard complex associated with Veselov systems.
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Separable quantizations of Stäckel systems

M. Blaszak, K. Marciniak, Z. Domanski
Faculty of Physics, Poznan University, Poland

Department of Science and Technology, Linkping University, Sweden
Faculty of Physics, Poznan University, Poland

In this talk I will addresses the issue of separable and integrable quantizations
of commuting sets of quadratic in momenta Hamiltonian of the form

H(x, p) =
1

2
Aij(x)pipj + V (x) (1)

The Hamilton operator (quantum Hamiltonian) Ĥ = − h̄2

2 ∇iAij∇j + V (x) act-

ing on the Hilbert space L2
(
Q, |det g|1/2 dx

)
of square integrable (in the mea-

sure ωg = |det g|1/2 dx) complex functions on Q is called a minimal quantization
of the Hamiltonian (1) in the metric g that also defines the operators ∇i of the
asociated Levi-Civita connection.

In the standard approach to the quantization of (1) one assumes that g =
A−1 (as it has been done in the classical works [1] and [2] devoted to the problem
of separability of classical Hamilton-Jacobi equation associated with (1)) i.e. the
tensor A is taken as a contravariant metric generating the connection ∇i. This
is a natural assumption, but it leads to severe limitations on the process of
quantization of (1).

I this talk I first explain the notion of minimal quantization and its rela-
tion to the more general quantization theory developed in [3, 4, 5]. Then I
demonstrate that many Hamiltonian systems of the form (1) - that can not be
separably quantized in the classical approach of Robertson and Eisenhardt -
can be separably quantized if we extend the class of admissible quantizations
through a suitable choice of Riemann space adapted to the Poisson geometry
of the system. Actually, in this talk I will demonstrate that for every quadratic
in momenta Stäckel system (defined on an n dimensional Poisson manifold) for
which its Stäckel matrix consists of monomials in position coordinates there
exist infinitely many minimal quantizations - parametrized by n arbitrary func-
tions - that turn this system into a quantum separable Stäckel system. I also
explain the origin of so called quantum correction terms, observed - but not
explained - in [6] and [7]

The results presented in this talk can be to some extent found in [8].
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Cluster varieties and integrable systems

A. Marshakov
Lebedev Physical Institute,

Institute for Theoretical and Experimental Physics,
Higher School of Economics,

Moscow, Russia

I describe a class of integrable systems on Poisson submanifolds of the (gen-
erally - affine) Poisson-Lie groups, enumerated by cyclically irreducible elements
the co-extended affine Weyl groups. Their phase spaces admit cluster coordi-
nates and the integrals of motion are cluster functions. This class of integrable
systems coincides with the constructed by Goncharov and Kenyon out of dimer
models on a two-dimensional torus and classified by the Newton polygons. Par-
ticular examples include the well-known relativistic Toda chains, the system of
“pentagram map” and their many generalizations.
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Gravipulsons

V.A. Koutvitsky, E.M. Maslov

Pushkov Institute of Terrestrial Magnetism,
Ionosphere and Radio Wave Propagation (IZMIRAN)

of the Russian Academy of Sciences,
Troitsk, Moscow Region, 142190, Russia

We search for self-gravitating oscillating scalar lumps (pulsons) in the field
model

Rµν −
1

2
Rgµν = κ

[
φ,µφ,ν −

(
1

2
φ,αφ

,α − U(φ)

)
gµν

]
,

φ;α;α + U ′(φ) = 0

with the potential

U(φ) =
m2

2
φ2
(
1− ln

φ2

σ2

)
.

With the use of the Krylov-Bogoliubov type asymptotic expansion in grav-
itation constant the pulson solutions of this Einstein-Klein-Gordon system are
obtained in the Schwarzschild coordinates. They are expressed in terms of so-
lutions of the singular Hill’s equation. The masses of the obtained pulsons are
calculated. The initial conditions are found under which the pulson solutions
become periodic. These conditions are then used in direct numerical integra-
tion of the Einstein-Klein-Gordon system. It is shown that they do evolve into
a very long-lived periodic pulson. Stability of the self-gravitating pulsons and
their possible astrophysical applications are briefly discussed.
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Differential-difference and finite-difference
integrable systems associated with Kac-Moody

algebras

A.V. Mikhailov
School of Mathematics, University of Leeds, Leeds, UK

We consider Lax operators for two–dimensional “periodic” Toda type systems
corresponding to classical series of Kac-Moody algebras and G(1)

2 [1]. For these
Lax operators we construct systematically elementary Darboux transformations
and integrable differential-difference systems (Bäcklund transformations). Con-
ditions of Bianchi permutability for Bäcklund transformations, or, more pre-
cisely, the commutativity conditions for the Darboux transformations lead to
systems of integrable partial difference equations. Thus, with every classical
Kac-Moody Lie algebra and G(1)

2 we associate an integrable Toda type system,
a pair of differential-difference systems and a partial difference system. These
differential-difference systems represent Bäcklund transformations for the Toda
type system and serve as (non-local) symmetries for the partial-difference sys-
tem of equations.
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Random partitions and the quantum
Benjamin-Ono hierarchy

Alexander Moll
MIT

The Cauchy identity for Jack symmetric functions defines an ensembleMV (β, L)
of random partitions λ. This ensemble appears in the dynamics of the quantum
Benjamin-Ono fluid in (1+1)-dimensions at coupling β with L-periodic initial
profile V . For both formal and analytic V , at fixed β > 0, we obtain an all-
order 1/L expansion of the linear statistics of MV (β, L) in a diffusive scaling
limit. This result has the same form as Chekhov-Eynard’s all-order 1/N refined
topological expansion of the connected correlators of the log-gas on the line in
a potential V at inverse temperature β [1]. Our derivation relies on the infinite
hierarchy of conserved currents of this system exhibited by Nazarov-Sklyanin in
collective field variables [2]. As an application, we prove a law of large numbers
and central limit theorem in this limit: (i) the random interface λ concentrates
on Okounkov’s limit shape ωV [3] and (ii) macroscopic fluctuations around ωV
occur at order 1/L and converge to a Gaussian process ΦV whose covariance
depends universally on V . The exact calculation of these asymptotics in terms
of V hinges on an analytic continuation made possible by the inversion formula
for Toeplitz operators on the circle with symbol V due to Krein and Calderón-
Spitzer-Widom [4, 5].
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Towards an algebraic framework of
hydrodynamic integrability

G. Manno, G. Moreno
Politecnico di Torino

Università degli Studi di Salerno

Hirota–type PDEs (i.e., of he form F (uij) = 0) are naturally understood
as hypersurfaces in Lagrangian Grassmannians. The latter possess a very in-
teresting geometry, which I will quickly review. In particular, I will focus on
the notion of rank–one vectors and rank–one submanifolds, which constitute an
essential tool to define hydrodynamic integrability. Then I will show that the
Plücker embedding space is equipped with a (conformal) symplectic structure or
a pseudo–Riemmannian metric of neutral signature, depending on the parity of
the number n of independent variable, and that the Lagrangian Grassmannian
is isotropic with respect to such a structure. The moduli space of Hirota–type
PDEs fulfilling some additional property, like the linearisability, correspond to
a singular stratum of the dual variety of the Lagrangian Grassmannian.

In the sub–class of non–degenerate Monge–Ampère equations, the linearis-
ability coincides with integrability, if n = 3, whereas, if n = 4, integrability
corresponds to the singular locus of the dual variety. For n ≥ 4, Ferapontov
conjectured that any non–degenerate integrable PDE of Hirota–type must be of
Monge–Ampère type [1], and I will formulate such a conjecture in the proposed
algebraic framework.
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Lagrangian Multiform Theory: recent advances
and future perspectives

F. Nijhoff
School of Mathematics, University of Leeds

Lagrangian multiform theory was initiated in 2009 with the paper [1] by
Sarah Lobb and the speaker, where a novel proposal was formulated on how the
fundamental integrability property of multidimensional consistency (MDC) can
be integrated into the variational approach to integrable systems. The idea is
based on the key discovery that well-chosen Lagrangians for both continuous as
well as discrete integrable systems, when embedded in a multidimensional space
of independent variables, obey a special relation, called the closure property,
which suggests that these Lagrangians are in fact (difference or differential)
forms with the condition that they are closed on solutions of the equations of
the motion. (Note that the Lagrangians in this case are not volume forms as
in the conventional theory, and that the closure only holds "on-shell", i.e. for
solutions of the Euler-Lagrange equations and not as a trivial identity). On
the basis of this observation a new point of view on variational calculus was
developed which brings into the picture not only variations with respect to
the dependent variables, but also variations with respect to the geometry in
the space of independent variables. The validity and universality of this new
approach was verified for many classes of examples, discrete as well as continuous
and for 1D, 2D and 3D systems, cf. [2]-[7]. In the simplest case of 1D systems,
i.e. the case of commuting flows of ordinary differential and ordinary difference
equations, the basic principles of the new variational calculus were laid down in
[6, 8, 9] cf. also [10] for the 2D case. Further contributions to the theory were
made by other researchers as well, cf. e.g. [11]-[14], adding to the growing body
of research in this novel direction.

In the talk I will give a brief overview of the theory, highlight the main ideas
and give some explicit examples and some new results. I will also point to what
in my view are the directions of travel. In fact, where this new variational the-
ory is essentially different from any conventional theory of variational calculus is
that rather than the Lagragians being chosen on the basis of secondary consid-
erations (e.g. physical principles, symmetry arguments, etc.) in the multiform
theory the Lagrangians themselves should be considered as solutions of the vari-
ational equations. I will try and discuss the possible ramifications of this idea
for fundamental physics and in particular quantum mechanics.
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Multilinear Baker-Hirota operators with
application to nonlinear differential equations

I.A. Il’in1, D.S. Noshchenko1,2, A.S. Perezhogin1,2

1Institute of Cosmophysical Research and Radio Wave Propagation
of the Far Eastern Branch of Russian Academy of Science, Russia

2 Vitus Bering Kamchatka State University, Russia

1 Introduction
Nonlinear differential equations with soliton solutions can be written in a bilinear
form in terms of Hirota D operator:

Dm
x D

n
t = (∂x − ∂x′)m (∂t − ∂t′)n F (x) · F (x′)|x′=x,t′=t (1)

For an example, the KdV equation

ut + 6uux + uxxx = 0 (2)

transforms to
Dx(D

3
x +Dt)F · F = 0, (3)

under u = 2∂xx logF substitution. This representation allows to apply certain
explicit methods to constuct multisoliton solutions. In fact, every bilinear equa-
tion has at least two-soliton solution. Conditions for three-soliton solutions are
studied in J.Hietarinta’s papers.

2 Baker-Hirota operators
Here we study multilinear generalization of (1), also referred as Baker-Hirota
(B-H) operator [1, 2]:

Hn,1 = S◦D(F · F ···· ·F︸ ︷︷ ︸
n times

) =
(
∂1F · F ···· ·F + γF · ∂2F ···· ·F + ·+ γn−1F · F ···· ·∂nF

)
|x′i=x

(4)
where γ – nth root of unity, S is a symmetrization operator. For given n there
are exact (n−1) symmetrical B-H operators, formed over γk permutations. For
example, the trilinear case [1] is given by

H3,1 = ∂1 + e
2
3 iπ∂2 + e

4
3 iπ∂3 (5)

H3,2 = ∂1 + e
4
3 iπ∂2 + e

2
3 iπ∂3 (6)

For odd i bilinear operator Di(F · F ) is identically zero. Similar con-
dition hold for higher order multilinear operators. Denote [i1, i2, . . . in−1] =
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Hi1
n,1H

i2
n,2 . . . H

in−1

n,n−1. We found that for any prime n

n−1∑

k=1

(
n− 2

k

)
ik mod n 6= 0 (7)

implies [i1, i2, . . . in−1] ≡ 0, so non-zero B-H operators form a lattice in n − 1
dimensions.

3 Multilinear forms of nonlinear equations
We discuss multilinear forms of Lax, Sawada-Kotera hierarchies and some other
KdV-like equations. The following results are obtained by direct computation.
Note here that we do not consider additional parameters to B-H, i.e. all forms
are represented in 1 + 1 variables.

Trilinear form for KdV equation:

(
T 4
xT
∗
x + T 2

xTt
)
F · F · F = 0. (8)

The equation of fifth order from Lax hierarchy has trilinear form

(20T 3
xT
∗3
x + 7T 6

x + 27T ∗xTt)F · F · F = 0 (9)

and 2 quadrilinear forms. One of these form is
(
G21xG3

6
x + 5G11xG2

3
xG3

3
x + 12G12xG2

1
t

)
F · F · F · F = 0, (10)

where G1, G2, G3 – quadrilinear operators.
Lax equation of seventh order has a pentalinear form:

4368P [0,3,1,4] + 2310P [0,6,0,2] − 648P [1,7,0,0] − 44284P [0,2,3,3] + 625ut = 0 (11)

Fifth order equation from Sawada-Kotera hierarchy has bilinear and trilinear
forms. We also found multilinear forms for new and tail equations with two-
soliton solution.

Equation Bilinear Trilinear Quadrilinear Pentalinear Hexalinear
Lax3 Dx(D

3
x +Dt) 2T 2

xT
∗2
x + 3T∗xTt 2G12xG32x +G12xG21t YES

- ??T 4
xT
∗
x+??T∗xTt YES

Lax5 - 20T 3
xT
∗3
x + 7T 6

x + 27T∗xTt YES
- G21xG36x + 5G11xG23xG33x + 12G12xG21t

Lax7 - - - YES YES
- - - - YES

SK5 Dx(D
5
x +Dt) 10T 3

xT
∗3
x − T 6

x + 9T∗xTt YES
T 5
xT
∗2
x + T 2

xTt YES
SK7 14T 4

xT
∗4
x + 14T 7

xT
∗
x + 27TxTt 3G38x + 7G12xG36x − 42G12xG24xG32x + 64G12xG21t

- 7G12xG23xG34x +G11xG21xG37x + 16G12xG21t
new7 Dx(D

7
x +Dt) 35T 4

xT
∗4
x − 4T 7

xT
∗
x + 27TxT

∗
t YES

- 7G24xG3∗4x −G1xG22xG35x + 12G12xG21t
tail9 Dx(D

9
x +Dt) 7T 5

xT
∗5
x − 5T 8

xT
∗2
x + 9TxT

∗
t YES

4 Conclusion
In recent study we obtain bases of high order Baker-Hirota operators. Using
them we represent certain integrable nonlinear PDEs in multilinear form. Direct
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methods of constructing solutions are available in bilinear case, but for n > 3 it
is unclear how to apply them. So the next step is to investigate symmetries for
multilinear equations.
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On the classification of discrete Hirota-type
equations in 3D

E.V. Ferapontov, V.S. Novikov, I. Roustemoglou

Department of Mathematical Sciences,
Loughborough University, LE11 3TU, UK

In the series of recent publications [1-4] we proposed a novel approach to the
classification of integrable differential/difference equations in 3D based on the
requirement that hydrodynamic reductions of the corresponding dispersionless
limit are ‘inherited’ by the full dispersive equation. In this paper we extend
our approach to fully discrete equations. Our only constraint is that the initial
ansatz possesses a non-degenerate dispersionless limit (this is the case for all
known Hirota-type equations). Based on the method of deformations of hydro-
dynamic reductions, we classify 3D integrable equations of Hirota type within
various particularly interesting subclasses.
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Ubiquitous symmetries

M.C. Nucci,
University of Perugia & INFN-Perugia, Perugia, Italy

We present an overview of some of our recent work:

(1) quantization of the isochronous Calogero’s goldfish model [1], and its rela-
tionship with Darwin [3], [2], [6];

(2) classical superintegrable systems are indeed linear [7], [4];

(3) for Riccati and Abel chains nonlocal symmetries (esp. λ-symmetries [5])
come from Lie symmetries.
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Cubic-Quintic NLS Equations with
Four-Dimensional Symmetry Algebras

C. Özemir
Dep. of Mathematics, Istanbul Technical University, Istanbul, Turkey

In this communication we aim at studying a class of cubic-quintic nonlinear
Schrödinger equations, given in the form

iut + uxx + g(x, t)|u|2u+ q(x, t)|u|4u+ h(x, t)u = 0 (1)
in which the complex coefficients g, q and h will be assumed to have some specific
forms so that the equation under consideration admits a four-dimensional Lie
symmetry algebra. The motivation for this study comes from the work [1] on a
general class of cubic-quintic nonlinear Schrodinger equations given as

iut + f(x, t)uxx + k(x, t)ux + g(x, t)|u|2u+ q(x, t)|u|4u+ h(x, t)u = 0. (2)

We performed in [1] classification of this family of equations according to Lie
symmetry algebras they can admit. There u is a complex-valued function, f is
real-valued, and k, g, q, h are complex-valued functions. (1) appears as a canon-
ical equation when classifying the family (2) with respect to Lie symmetries.

The purpose of this contribution is to share the results on solutions of re-
ductions of the canonical PDEs of the form (1). There are four representative
equations in this class, from which several first, second and third order reduced
ODEs are obtained through well known algorithm of Lie (see [2]). Although
the reduced equations do not appear in a manageable form due the quintic
nonlinearity and though most of them do not have the Painleve property, in
specific cases we were able to obtain exact analytical solutions for equations
with variable coefficients, through truncation in Painleve series. What is more,
one of those solutions is expected to expose a blow-up behaviour in finite time
in an appropriate Lp space, due to the conformal invariance of the PDE itself,
through the machinery similar to the one studied in [3].
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with four-dimensional symmetry groups and analysis of their solutions. J.
Math. Phys. 52 (2011), 093702.

[3] C. Özemir, F. Güngör. A variable coefficient nonlinear Schrödinger equation
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Integrable Multidimensional Quasilinear
Systems of First Order and Their 1+1

Dimensional Dispersive Reductions

M. V. Pavlov
Lebedev Physical Institute of Russian Academy of Sciences

We introduce some three-, four-, five-, six- etc. dimensional quasilinear
systems of first order, which are integrable by the method of hydrodynamic
reductions.

We show that these multidimensional systems also possess 1+1 dispersive
reductions.

For instance, we construct such a four dimensional enveloping system for
the KdV equation, a four dimensional enveloping system for the constant astig-
matism equation and five dimensional enveloping system for the Boussinesq
equation.
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Commutator identities on an associative algebra
and non-Abelian integrable equations

A.K. Pogrebkov
Steklov Mathematical Institute and

NRU Higher School of Economics, Moscow, Russia

In [1] and [2] it was shown that integrable equations are associated with com-
mutator identities on associative algebras. Here were develope this approach
for non-Abelian case starting with a simple commutator (in the algebraic sense)
identity. By means of a special dressing procedure we prove that this identity re-
sults in non-Abelian Hirota difference equation. We present a regular procedure
for derivation of non-Abelian (differential-difference and difference) integrable
equations as special limiting cases of the general procedure.
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Integrability in the systems with Dirac
dispersion of low-energy excitations

E. V. Chulkov1,2,3,4, A. P. Protogenov2,5, O. A. Shagalova5
1Departamento de Física de Materiales,

Uviversidad del País Vasco, San Sebastián, Spain
2Donostia International Physics Center, San Sebastián, Spain

3Centro de Física de Materiales CFM-Materials Physics Center,
Centro Mixto CSIC-UPV/EHU, San Sebastián, Spain

4Tomsk State University, Tomsk, Russia
5Institute of Applied Physics, RAS, Nizhny Novgorod, Russia

New classes of matter known as topological insulators and Weyl semimetals
are characterized by linear dispersion of low-energy electron excitations on the
surface and in the bulk, respectively. The electron states on the surface of these
so-called Dirac materials have a fixed spin orientation for each momentum. The
electron states in topological insulators are topologically protected by the time-
reversal symmetry. A condition for the existence of Weyl semimetal is breaking
of either inversion or time-reversal symmetry. The topological protection mani-
fests itself as massless Dirac modes propagating along the edge and the surface
of topological insulators or in the bulk of Weyl semimetals and on their surface
in the form of Fermi arc states. Study of the properties of surface electron states
being a hallmark of the topological nature of Weyl nodes enables one to clarify
some features of the topological protection by a symmetry. This macroscopic
exhibition of the topological order offers new application areas.

We have used the N -terminal scheme for studying the edge state transport
in two-dimensional topological insulators. We found an universal non-local re-
sponse in the integrable limit of the nonlinear ballistic transport approach. We
have exactly calculated the density of surface states in Weyl semimetals and
shown that it possesses a logarithmic singularity for ε → 0 decreasing linearly
for the intermediate energy ε of the surface electron states and approaching zero
as
√
1− ε for ε → 1. This resembles the behavior of a set of two orthogonal

one-dimensional Dirac metals embeded in two-dimensional space.
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Quantization of Poisson structures on Painleve
monodromy varieties

L. Chekhov, M. Mazzocco, V. Roubtsov
Address of the Speaker:

Maths Department, University of Angers,
Lavoisier Boulevard, Angers, 49045, CEDEX 01, France

E-Mail: volodya@tonton.univ-angers.fr

We discuss quantum algebras related to cubics arising as monodromy data
varieties for Painlevé equation. We describe some examples of non-commutative
cubics unifying the “quantum Painlevé cubics” and cubic superpotentials for 3D
(generalized) Sklyanin algebras. Such general potentials appear in a description
of moduli spaces of vacuum states in N = 4 supersymmetric Yang-Mills field
theory.
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Recent results on integrable dispersionless PDEs
in multidimensions

P.M. Santini
Department of Physics, University of Roma “La Sapienza”

We first review the formal aspects of the theory of integrable dispersionless
PDEs in multidimensions (including, as distinguished examples, the dispersion-
less Kadomtsev - Petviashvili, the heavenly and the Boyer-Finley equations)
arising as commutation condition of multidimensional vector fields, obtained in
collaboration with S. V. Manakov: the IST formalism for solving the Cauchy
problem, the construction of the longtime behavior of solutions and of exact
implicit solutions, and the analytical aspects of multidimensional wave break-
ing [1] - [4]. We also present some recent results including, in particular, some
rigorous aspects of such a theory, obtained in collaboration with P. Grinevich
and D. Wu [5].
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Hamiltonian operators of Dubrovin-Novikov
type in 2D

E. V. Ferapontov, P. Lorenzoni, A. Savoldi
Loughborough University

Università di Milano-Bicocca
Loughborough University

First order Hamiltonian operators of differential-geometric type were intro-
duced by Dubrovin and Novikov in 1983 [1], and thoroughly investigated by
Mokhov [3]. In 2D, they are generated by a pair of compatible flat metrics g and
g̃ which satisfy a set of additional constraints coming from the skew-symmetry
condition and the Jacobi identity.

The aim of this talk is to present results we have recently obtained in a
joint work with E.V. Ferapontov and P. Lorenzoni [2] concerning non-degenerate
Hamiltonian structures of this type. We show that the skew-symmetry condition
and the Jacobi identity are equivalent to the requirement that g̃ is a linear
Killing tensor of g with zero Nijenhuis torsion. This allowed us to obtain a
complete classification of n-component operators with n ≤ 4 (for n = 1, 2 this
was done before). For 2D operators the Darboux theorem does not hold: the
operator may not be reducible to constant coefficient form. All interesting
(non-constant) examples correspond to the case when the flat pencil g, g̃ is not
semisimple, that is, the affinor g̃g−1 has non-trivial Jordan block structure. In
the case of a direct sum of Jordan blocks with distinct eigenvalues we obtain a
complete classification of Hamiltonian operators for any number of components
n, revealing a remarkable correspondence with the class of trivial Frobenius
manifolds.
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Separation of variables in the Clebsch model

F.Magri, T.Skrypnyk
Universita degli Studi di Milano-Bicocca, Milano, Italia

Universita degli Studi di Milano-Bicocca, Milano, Italia and
Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

We study a problem of separation of variables in the classically integrable
hamiltonian systems on the phase space of the dimension 2D = 4. We formulate
a necessary and sufficient condition for a pair of Poisson-commuting coordinates
x1, x2 on this space to be the coordinates of separation. We apply the proposed
approach to the case of Clebsch model on e∗(3) and obtain separated coordinates
x1, x2 and their conjugated momenta p1, p2 on the arbitrary coadjoint orbit of
the Lie group E(3). We discuss the relation of the obtained results with the
Lax-pair based approach and with the “Neumann”-type coordinates of separation
existing only on the special coadjoint orbits of E(3).
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On the monodromy of almost toric fibrations on
the complex projective plane

G. Smirnov
SISSA

Let (M,ω) be a closed symplectic 4-manifold admitting an almost toric fibra-
tion in sense of Symington (see [1]). It is a Lagrangian torus fibration π : M 7→ B
such that the fibers have only focus-focus or elliptic singularities. If there exists
an almost toric fibration on M , then M is called an almost toric manifold.

In the work [1] the complete classification of the total spaces and bases of
almost toric fibrations is obtained and the classification problem, up to fiber
preserving symplectomorphism, for those fibrations also is formulated. In the
case of CP 2 the possibilities for bases are described by the following statement.

There exist precisely four distinct bases for an almost toric fibration on the
complex projective plane. The base is a 2-disk whose boundary has k corners
(k = 0, 1, 2, 3) and 3− k nodes.

The topological structure of the corresponding fibrations is mainly deter-
mined by the monodromy. We describe the monodromy in non-trivial cases of
two and three nodes (see [2]).
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3D superintegrable systems with magnetic field

A. Marchesiello†, L. Šnobl†, P. Winternitz‡
†Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague
‡Centre de recherches mathématiques & Département de mathématiques

et de statistique, Université de Montréal

We consider superintegrable systems, i.e. Hamiltonian systems that have
more integrals of motion than degrees of freedom, in three spatial dimensions.
Such Hamiltonian systems were considered and under some restrictions classified
in [1, 2] for the case when the Hamiltonian is the sum of the kinetic energy in
R3 and the scalar potential.

In [3] the structure of the gauge–invariant integrable and superintegrable
systems involving vector potentials was considered in two spatial dimensions.
Among other results it was shown there that under chosen assumptions imposed
on the form of the potential, no superintegrable system with nonconstant mag-
netic field exists. Inspired by the approach used there we consider the Hamilto-
nian describing motion of 0–spin particle in three dimensions in a nonvanishing
magnetic field, i.e. classically

H =
1

2
(~P + ~A)2 + V (~x) (1)

where ~P is the momentum, ~A is the vector potential and V is the scalar poten-
tial. The magnetic field ~Ω = rot ~A is assumed to be nonvanishing so that the
system is not gauge equivalent to a system with only the scalar potential. Quan-
tum mechanically, observables are replaced by corresponding operators and the
expression is totally symmetrized.

We suppose that at least three independent integrals of motion in addition
to the Hamiltonian exist, all of them at most second order in momenta. We
investigate the restrictions this imposes on the vector and scalar potential and
on the magnetic field strength ~Ω. Next we consider how these conditions differ
for the classical and quantum case, i.e. whether purely quantum superintegrable
systems involving magnetic field without classical analogue exist. Last but not
least we look for examples of 3D superintegrable systems with nonconstant
magnetic field ~Ω.
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Complete integrability from Poisson-Nijenhuis
structures on compact hermitian symmetric

spaces

F. Bonechi1, J. Qiu2, M. Tarlini3
1INFN Sezione di Firenze

2Department of Mathematics, Uppsala University,
Max-Planck-Institut für Mathematik

3INFN Sezione di Firenze

We study a class of Poisson-Nijenhuis systems defined on compact hermitian
symmetric spaces, where the Nijenhuis tensor is defined as the composition of
Kirillov-Konstant-Souriau symplectic form with the so called Bruhat-Poisson
structure. We determine its spectrum. In the case of Grassmannians the eigen-
values are the Gelfand-Tsetlin variables. We introduce the abelian algebra of
collective hamiltonians defined by a chain of nested subalgebras and prove com-
plete integrability. By construction, these models are integrable with respect to
both Poisson structures. The eigenvalues of the Nijenhuis tensor are a choice
of action variables. Our proof relies on an explicit formula for the contravari-
ant connection defined on vector bundles that are Poisson with respect to the
Bruhat-Poisson structure.

arXiv:1503.07339
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The Haantjes Manifolds of Integrable and
Separable Systems

P. Tempesta, G. Tondo
Dep. de Física Teórica II, Universidad Complutense, Madrid, Spain

Dep. of Mathematics and Earth Sciences, University of Trieste , Italy

A general theory of finite-dimensional integrable systems is proposed, based
on the geometry of Haantjes tensors [1]. Inspired by the very recent defini-
tion of Haantjes manifolds [2], we introduce the class of symplectic-Haantjes
structures (or ωH structures) and the notion of Lenard-Haantjes chains [3],
as a generalization of the famous Lenard-Magri chains. Then, we prove that,
under mild assumptions, the existence of a Haantjes structure is equivalent to
the Liouville-Arnold integrability of each Hamiltonian system belonging to a
Lenard-Haantjes chain [3]. Furthermore, we will revisit the theory of separation
variables in symplectic-Nijenhuis manifolds (or ωN manifolds) [4], under the
new light thrown by the notion of Lenard-Haantjes chains, and will clarify the
relation between ωH and ωN manifolds.

Applications of our approach to the study of some physically relevant systems
will be presented.
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Vortex streets and solitons

A.P. Veselov
Loughborough University, UK

Classical von Karman vortex street is an example of periodic relative vortex
equilibria, which are periodic configurations of vortices in the plane moving with
constant velocity.

I will explain that it is simply related to the singularities in the complex
domain of the classical soliton solution of the KdV equation and generalise
this to multi-soliton case. The geometry of the corresponding relative vortex
equilibria, which seem to be new, is still to be understood. I will discuss some
qualitative results in this direction in the simplest cases.
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Dark-bright soliton solutions with nontrivial
polarization interactions for the

three-component defocusing nonlinear
Schrödinger equation

G. Biondini, D.K. Kraus, B. Prinari, F. Vitale
State University of New York at Buffalo
State University of New York at Buffalo

University of Salento and University of Colorado
University of Salento

In this talk we present novel dark-bright soliton solutions for the three-
component defocusing nonlinear Schrödinger equation with nonzero boundary
conditions. The solutions are obtained within the framework of a recently devel-
oped inverse scattering transform for the underlying nonlinear integrable PDE,
and unlike dark-bright solitons in the two component (Manakov) system in the
same dispersion regime, their interactions display non-trivial polarization shift
for the two bright components.
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Representations of sl(2,C) in the BGG category
O and master symmetries

J-P Wang
School of Mathematics, Statistics & Actuarial Science

University of Kent, Canterbury, UK

In this talk, we show the indecomposable sl(2,C) modules in the Bernstein-
Gelfand-Gelfand (BGG) category O naturally arise for homogeneous integrable
nonlinear evolutionary systems. We then develop an approach to construct
master symmetries for such integrable systems. This method enables us to
compute the hierarchy of time-dependent symmetries. We finally illustrate the
method using both classical and new examples. We compare our approach to
the known existing methods used to construct master symmetries. For the new
integrable equations such as a Benjamin-Ono type equation, a new integrable
Davey-Stewartson type equation and two different versions of (2+1)-dimensional
generalised Volterra Chains, we generate their conserved densities using their
master symmetries.
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Selberg integrals on Riemann surfaces

P. Wiegmann
University of Chicago, USA

A number of problems in physics and geometry yield a natural generaliza-
tion of Selberg integral to Riemann surfaces. At large number of variables the
integral can be evaluated as a series in powers of 1/N . Each term in this series is
a geometric invariant which carries an information about the Riemann surface.
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Classical and Quantum Superintegrable Systems
with N-th Order Integrals of Motion

P. Winternitz, S. Post
Université de Montreal
University of Hawaii

The general form of an integral of motion that is a polynomial of order
N in the momenta is presented for a Hamiltonian system in two- dimensional
Euclidean space. The classical and the quantum cases are treated separately,
emphasizing both the similarities and the differences between the two. The
main application will be to study superintegrable systems that allow one N-th
order and one second order integral of motion. The connection with Nth order
ODEs having the Painlevé property is discussed.
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Dispersionless DKP hierarchy and elliptic
Loewner equation

A. Zabrodin
Higher School of Economics and

Institute for Theoretical and Experimental Physics, Moscow, Russia

We show that the dispersionless versions of the DKP hierarchy (also known
as the Pfaff lattice) and the Pfaff-Toda hierarchy admit suggestive reformula-
tions through elliptic functions. We also consider one-variable reductions of the
dispersionless DKP hierarchy and show that they are described by an elliptic
version of the Loewner equation. With a particular choice of the driving func-
tion, the latter appears to be closely related to the Painleve VI equation with
special choice of parameters.
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Structure of asymptotic soliton webs in
solutions of Kadomtsev-Petviashvili II equation

Y. Zarmi
Jacob Blaustein Institutes for Desert Research

Ben-Gurion Univeristy of the Negev
Midreshet Ben-Gurion, Israel 8499000

Asymptotically in time, most multi-soliton solutions of the Kadomtsev-
Petviashvili II equation self-organize in webs comprised of solitons and soliton-
junctions. As distances between junctions grow, the memory of the structure
of junctions in a connected pair ceases to affect the structure of either junction.
As a result, every junction propagates at a constant velocity, which is deter-
mined by the wave numbers that go into its construction. A simple geometric
consideration explains two characteristics of the webs. The first, and imme-
diate, consequence is that asymptotic webs preserve their morphology as they
expand in time. Another consequence, explains why, except in special cases,
only 3-junctions (Y-shaped, involving three wave numbers) and 4-junctions (X-
shaped, involving four wave numbers) can partake in the construction of an
asymptotic soliton web.
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Formation of curvature singularities on a fluid
interface during the Kelvin-Helmholtz instability

E.A. Kuznetsov1,2, N.M. Zubarev1,3

1 P.N. Lebedev Physical Institute, RAS, Moscow, Russia
2 L.D. Landau Institute for Theoretical Physics,

RAS, Chernogolovka, Moscow region, Russia
3 Institute of Electrophysics, UB, RAS,

Ekaterinburg, Russia

As is known, the interface between two fluids is unstable in the presence of
a tangential velocity discontinuity. It was established by Moore [1] that, for
the case of one fluid, the nonlinear stage of this instability, called the Kelvin-
Helmholtz instability, is accompanied by developing singularities on the surface
of the tangential discontinuity. For these singularities the discontinuity surface
remains smooth, but its curvature becomes infinite in a finite time.

In the present work we consider the case of an interface — the boundary
between two different fluids (i.e., Atwood numbers are arbitrary). It is shown
within the Hamiltonian formalism that the equations of motion derived in the
small interface angle approximation admit exact solutions in the implicit form
(see also Ref. [2]). The analysis of these solutions shows that, in the general
case, weak root singularities are formed on the interface due to the Kelvin-
Helmholz instability. The surface profile and its first derivative occur continuous
functions close to the singularities, but the second derivative becomes infinite
while approaching the collapse instant. For Atwood numbers close to unity
in absolute values, the surface curvature has a definite sign correlated with
the boundary deformation directed towards the light fluid. For the fluids with
comparable densities, the curvature changes its sign in a singular point. In
the particular case of the fluids with equal densities, the obtained results are
consistent with those obtained by Moore.

This study was supported by the Ural Branch of RAS (project no. 15-8-2-8)
and by the RFBR (project no. 13-08-96010-Ural).
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Tropical Limit in Statistical Physics

B. G. Konopelchenko, M. Angelelli
University of Salento and Sezione INFN, Lecce

This contribution proposes a new definition of tropical limit for macroscopic
systems in equilibrium outlined in [1]. Tropical geometry is an emergent branch
in mathematics and physics [2] with application in high-energy physics and
complex systems. So far tropical limit in statistical models has been considered
as a low-temperature limit [3].

We argue that a more adapted description of tropical limit is given by the
double-scaling limit of Boltzmann constant k → 0 and a characteristic cardinal-
ity N → ∞ in such a way that kN = constant.

It is shown that such a definition is well-adapted to thermodynamic and
statistical analysis since it preserves thermodynamic relations leaving temper-
ature as a free parameter; moreover, it allows us to deal with systems with
highly degenerated energy levels, e.g. spin ice, spin glasses and more general
frustrated systems. Tropical free energy Ftr(T ) is a piecewise linear function of
temperature T , tropical entropy is a piecewise constant function and the system
has energy for which tropical Gibbs’ probability has maximum.

Such a formalism is a natural tool in the investigation of phenomena related
to exponential degenerations: among these, we describe the tropical analogue
of limiting temperatures [4] in systems with infinitely many energy levels.
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Totally asymmetric simple exclusion process on
long chains with a shortcut in the bulk

N. Zh. Bunzarova, J. G. Brankov
Institute of Mechanics, Bulgarian Acad. Sci., Sofia, Bulgaria
Laboratory of Theoretical Physics, JINR, Dubna, Russia

The one-dimensional totally asymmetric simple exclusion process (TASEP)
is one of the rare examples of exactly solvable models with non-equilibrium
steady states and boundary induced phase transitions. The process was first
introduced in [1] as a model of kinetics of protein synthesis, describing the
ribosome translocation along a messenger ribonucleic acid (mRNA). Another
natural interpretations of TASEP is given in terms of a single-lane vehicular
traffic, see the reviews [2, 3] and references therein. Various extensions of the
basic model were devised to describe different driving conditions and drivers
strategies. In this interpretation, the domain wall, or the shock in the density
profile, which appears on the coexistence line between the low-density and high-
density phases, models the front of a traffic jam. On simple chains the stationary
properties of TASEP have been extensively studied and exactly solved in the
thermodynamic limit for periodic, closed and open boundary conditions, first
for stochastic continuous-time dynamics and then for a number of update rules
in discrete time [2, 3].

Studies of TASEP on different networks with points of bifurcation and merg-
ing of chains have recently attracted much attention due to the variety of novel
features that have been observed in such complex non-equilibrium systems. The
special case of a network with a section of two parallel chains of equal length
inserted in the bulk of a long chain was studied in our paper [4]. Since there
are no exact results for TASEP on networks with junctions, effective injection
and ejection rates we introduced for each chain segment and the possible phase
structures of the system in terms of these rates were studied. A coexistence
phase in the double-chain segment was found when the head and tail single
chains are of equal length and in the maximum current phase. Recently, the de-
pendence of the phase in the double-chain segment on its position in a long but
finite network has been studied too [5]. It was found that a simple translation
of this section forward or backward along the backbone leads to a sharp change
in the shape of the density profiles in the parallel chains. The extreme case of
TASEP on open chains with a zero-length shortcut in the bulk was reexamined
in our recent paper [6]. It was shown that the shunted segment can exist in
both low-density and high-density phases, as well as in the coexistence (shock)
phase. The main parameters of that shock phase were found to be governed by
a positive root of a cubic equation the coefficients of which linearly depend on
the probability of choosing the zero-length shortcut.

This contribution presents a generalization of the above studies to the general
case of a shortcut of arbitrary length Lsc ≥ 2. We present both numerical and
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analytical results on the conditions for the appearance and the statistical prop-
erties of the coexistence state in the double-chain segment inserted in the bulk
of open chains of length L = 400, carrying the maximum current Jmax = 1/4
(in the thermodynamic limit). The problem is interesting on its own because
the conditions for coexistence of low- and high-density phases are essentially
different from those for a simple chain between two reservoirs. Our main results
are: (1) For any values of the external rates in the domain of the maximum
current phase, there exists a position of the shortcut where the shunted seg-
ment is in a phase of coexistence with a completely delocalized domain wall; (2)
The main features of the coexistence phase and the density profiles in the whole
network are well described by the domain wall theory. Apart from the negligible
inter-chain correlations, they depend only on the current through the shortcut;
(3) The model displays an unexpected feature - the current through the longer
shunted segment is larger than the one through the shortcut. In particular, we
show that this effect is due to the fact that the nearest-neighbor correlation be-
tween the first segment and the shortcut, G1,sc, are greater than the correlations
between the first segment and the second one, G1,2, for all Lsc < L:

J (2) >
1

8
+

1

4
(G1,sc −G1,2) , J sc <

1

8
− 1

4
(G1,sc −G1,2) , Lsc < L.

In conclusion, from the viewpoint of vehicular traffic, most comfortable con-
ditions for the drivers are provided when the shortcut is shifted downstream
from the position of coexistence, when both the shunted segment and the short-
cut exhibit low-density lamellar flow. Most unfavorable is the opposite case of
upstream shifted shortcut, when both the shunted segment and the shortcut are
in a high-density phase describing congested traffic of slowly moving cars. The
above results are relevant also to phenomena like crowding of molecular motors
moving along twisted protofilaments.
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Chaos control and function projective
synchronization of fractional order systems

through back stepping method

S. Das , V. Yadav
Department of Mathematical Sciences

Indian Institute of Technology (BHU), Varanasi-221005, India

In this article the authors have studied the chaos control and the func-
tion projective synchronization between fractional order identical T-system, and
non-identical T-system and Lorenz chaotic system using back stepping method.
According to the stability theory, the conditions for local stability of nonlinear
three-dimensional commensurate and incommensurate fractional order systems
are discussed. Feedback control method is used to control the chaos in the con-
sidered fractional order T-system. Numerical simulations are carried out using
MATLAB and the results are depicted through graphs.
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Analytic solutions of the Somos 6 recurrence via
hyperelliptic Prym varieties

Yu. N. Fedorov, A. N.W. Hone
Department of Mathematics I,

Polytechnic university of Catalonia, Barcelona, Spain,
School of Mathematics, Statistics & Actuarial Science,

University of Kent, Canterbury, United Kingdom

Somos sequences are integer sequences generated by bilinear recurrence re-
lations. They have appeared in number theory, statistical mechanics, as well
as arising from reductions of bilinear PDE in the theory of discrete integrable
systems. General bilinear recurrences of order 3,4, and 5 generate sequences of
Fibonacci-type numbers, which can be written in terms of the sigma-function
of appropriate elliptic curves.

This presentation concerns with the general form of the order 6 recurrence

τn+6τn = ατn+5τn+1 + βτn+4τn+2 + γτ2n+3, n ∈ N
with arbitrary coefficients α, β, γ, which can be described as an integrable bi-
rational map ϕ on C4 having 2 independent algebraic integrals (the Somos 6
map). As was shown in [1], the solutions of ϕ are the first ones which are beyond
genus one: they are parameterized by sigma-function of genus 2 curves.

Our goal is to reconstruct the sigma-function solutions of the Somos 6 map
from the initial data: Namely, given the first 6 terms of the sequence {τn}
we determine the equation of the corresponding hyperelliptic curve X and the
translation vector v ∈ Jac(X) in the sigma-function solution.

One of our main tools is a 3 × 3 Lax representation for the map ϕ, which
was recently derived from the similar Lax pair for the discrete BKP equation, as
was announced in [1]. The corresponding spectral curve S is trigonal of genus 4
having an involution σ with 2 fixed points. Then the 2-dimensional Jacobian of
X, the complex invariant manifold of ϕ, is identified with a principally polarized
Prym subvariety Prym(S, σ) of Jac(S).

To obtain an explicit algebraic description of Prym(S, σ) and, therefore,
of X, we use the recent result of [2], which studies the general case of 2-fold
coverings of hyperelliptic curves with 2 branch points.
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Quantum Boundary Conditions and Geometric
Phases

G. Garnero1,2, P. Facchi 1,2, G. Marmo3,4, J. Samuel5
1 Dipartimento di Fisica and MECENAS, Università di Bari,Italy

2INFN, Sezione di Bari, I-70126 Bari, Italy
3Dipartimento di Scienze Fisiche and MECENAS,

Università di Napoli “Federico II”, I-80126 Napoli, Italy
4INFN, Sezione di Napoli, I-80126 Napoli, Italy

5Raman Research Institute, 560080 Bangalore, India

In Physics dynamical equations often have a differential form and are solved
under various boundary conditions. Indeed in Quantum Mechanics the dynam-
ics is encoded by the Schrödinger equation:

i∂tψ = Hψ, (1)

where H, the Hamiltonian operator, is a self-adjoint operator. Thus, the dy-
namics described by this equation is consistently described by a unitary operator
and the spectrum associated to H is purely real.

In this contribution we are going to concentrate on the mutual relation be-
tween self-adjointness and boundary conditions. In particular following [1, 2] we
are going to concentrate on the one-dimensional case and using the technique
of boundary triples we are going to classify all boundary conditions.

Moreover we are going to show the existence of a non-trivial geometric phase
in a quantum system with moving boundaries. The problem of a non-relativistic
quantum particle confined in a one dimensional box with moving walls provided
with Dirichlet boundary conditions has been investigated in [3].

Here we are going to take into account more general boundary conditions and
study the geometric phases that emerge. Non-Euclidean geometries naturally
arise in this context unfolding new geometrical ideas in the field of quantum
mechanics.
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Topological atlas of an integrable system with
three degrees of freedom

I.I. Kharlamova, M.P. Kharlamov
RANEPA, Volgograd Branch

In this talk, we discuss the notion of a topological atlas of an integrable
Hamiltonian system with three degrees of freedom having a set of physical pa-
rameters. Such an atlas gives a complete description of the so-called rough
topology of the system. Since for any set of parameters we cannot give a clear
three-dimensional picture of the bifurcation diagram, we need to investigate
some cross-sections of this picture and their evolution with respect to the sec-
tion value and the parameters. The natural value to build cross-sections is the
energy value. In this approach, we in fact deal with iso-energy manifolds of the
system and the bifurcation diagrams of the restriction of the momentum map
to iso-energy manifolds. We present the method to obtain an analytical descrip-
tion of the separating set in the space “energy – physical parameters”. This set
classify so-called equipped iso-energy diagrams. The equipped diagram is the
bifurcation diagram stratified by the rank of the momentum map and the types
of critical points in the pre-image. Moreover, the notion of an equipped diagram
includes its span, i.e., it is supplemented with two-dimensional chambers which
are the components of the plane of the constants of the integrals additional to
the energy cut out by the bifurcation diagram together with the number of the
regular tori in the chambers and the way in which these tori are united in the
so-called families. To each edge of the diagram we attach the notation of a 3-
atom of the bifurcation occurring inside the iso-energy manifold when crossing
this edge.

The result is presented for the Kowalevski top in a double field. It was
proved integrable in [1, 2]. The critical subsystems forming the preimage of the
bifurcation diagram were found and integrated in [3, 4, 5]. The complete topo-
logical classification of singularities was obtained in [6]. In [7], a new approach
of visualizing two-dimensional topological invariants was given. These results
are taken as an analytical basis for constructing the complete topological atlas
of this irreducible problem with three degrees of freedom.

The work is partially supported by the RFBR grant No. 15-41-02049.
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On the reconstruction problem for nonlocal
symmetries

N. Khorkova
Bauman Moscow State Technical University

Let τ : Ẽ → E∞ be an arbitrary covering over an infinitely prolonged dif-
ferential equation E∞, E = {F = 0}. In local theory, if ϕ ∈ F(E∞)

⋂
ker `F ,

where `F is the universal linearization operator, then evolutionary derivation
3ϕ is a local symmetry of the equation E∞. In nonlocal theory any symme-
try in the covering τ is of the form 3̃ϕ,a = 3̃ϕ +

∑N
i=1 aj

∂
∂wi

, where function
ϕ ∈ F(Ẽ)⋂ ker ˜̀F , while functions aj ∈ F(Ẽ) satisfy an additional system of
equations. This system for a given ϕ (nonlocal shadow) may have no solution (in
particular, not every local symmetry can be extended to a nonlocal symmetry in
the covering τ : Ẽ → E∞). Nevertheless, one can try to find nonlocal symmetry
3̃ϕ,b for a given ϕ in another covering. This problem is called the reconstruction
problem for nonlocal symmetries or nonlocal shadows. This problem is of great
importance both from theoretical and practical points of view. Solution this
problem for one nonlocal shadow first was given in [2] (see also [4]), in the case
of finite number nonlocal shadow ϕ1, . . . , ϕm is given in [3], [5].

In this talk we review some old results and then revise and analyze construc-
tions of coverings from [2] from geometrical point of view.
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On invariant solutions of the k − ε turbulence
model

Nina Khorkova
Bauman Moscow State Technical University

The classical symmetries of the k− ε turbulence model have been calculated
in [1]. In this paper we consider symmetry reductions of the k − ε turbulence
model and obtain families of exact solutions.
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On generalization of vertical bundles

J. Kurek, W.M.Mikulski
Institute of Mathematics, Maria Curie-Sklodowska University

Lublin, Poland
Institute of Mathematics, Jagiellonian University

Krakow, Poland

In the previous paper [5], the authors constructed generalized vertical Weil
functors on the category of fibred manifolds withm-dimensional bases and fibred
maps with embeddings as base maps.

In the present paper we observe that almost the same construction works
on the category of all fibred manifolds and fibred maps. Next, we deduce that
fibred product preserving bundle functors on all fibred manifold maps are the
generalized vertical Weil functors on all fibred manifold maps.
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On the orientability of higher order contact
elements

M. Kureš
Brno University of Technology

In our contribution, we study higher order contact elements taking into ac-
count their orientability. We use methods of commutative algebra, in particular
Weil algebras. Our examples of Weil algebras having the group of automor-
phisms connected, which we present, may serve as a new approach to study of
certain geometrical objects not possessing orientation reversing maps. As to
applications, there are scientific papers with interesting occurrence of nonori-
entable manifolds. For instance, in the material science (see [1]) knots and
nonorientable surfaces in chiral nematics are studied, as an example of a phe-
nomenon that topological concepts have come to play an increasingly significant
role in characterizing materials across of diverse range of topics, e.g. in the study
of defects, [2].

In the talk, we build on our earlier papers [3] and [4].
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Thermostatistics of basic-deformed
bosons and fermions

A. Lavagno, G. Gervino
Department of Applied Science and Technology,

Politecnico di Torino, Torino, Italy and
INFN, Sezione di Torino, Italy

Based on the q-deformed oscillator algebra, we study the thermostatistics of
q-deformed bosons and fermions and show that thermodynamics can be built on
the formalism of q-calculus. The entire structure of thermodynamics is preserved
if ordinary derivatives are replaced by the use of an appropriate basic-deformed
Jackson derivative and q-integral [1, 2, 3]. In this context, we derive the most
important thermodynamic functions and we study the q-boson and q-fermion
ideal gas in the thermodynamic limit. Finally, we discuss the possible formu-
lation of a basic-deformed quantum mechanics defined in the framework of the
basic square-integrable wave functions space.
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Monodromy of the axially symmetric
1:1:−2 resonance

K. Efstathiou, H. Hanßmann, A. Marchesiello
Johann Bernoulli Institute, University of Groningen

Mathematical Institute, Utrecht University
Department of Physics, Czech Technical University in Prague

We consider integrable Hamiltonian systems in three degrees of freedom (3–
DOF), that are in m:m:−n resonance, where m and n are coprime integers with
m,n ≥ 1. The integrability comes from the periodic motion of the quadratic
part and an imposed rotational symmetry about the vertical axis. Namely, the
Hamiltonian function H Poisson commutes with the oscillator

L =
m

2
(y21 + x21) +

m

2
(y22 + x22) −

n

2
(y23 + x23)

where xi, yi, i = 1, 2, 3 are canonical co-ordinates on R6, i = 1, 2, 3. Further we
assume that H has an axial symmetry in the physical space R3 with respect
to rotations about the x3–axis, that is H Poisson commutes with the third
component of the angular momentum N . Since all three functions H, L and N
Poisson commute with each other they describe a 3–DOF integrable Hamiltonian
system and the energy-momentum mapping

F = (L,N,H) : R6 −→ R3

defines an integrable Hamiltonian fibration in R6 (IHF). Such class of systems
can appear in practice after normalization and truncation of axially symmetric
systems near an m:m:−n resonant equilibrium.

The understanding of the qualitative properties of IHFs is one of the central
problems of modern classical mechanics. For reviews of results and applications
see [1, 2]. In particular, Duistermaat [3] showed that the monodromy of the
IHF is the coarsest obstruction to the existence of global action angle variables.

Here we focus on systems near a 1:1:−2 resonance. The set of critical values
of the energy momentum mapping is determined by the bifurcation diagram of
the reduced 1–DOF system. We find a rich bifurcation diagram containing three
parabolas of Hamiltonian Hopf bifurcations that join at one point. Further, we
describe in detail the monodromy of the resulting ramified 3–torus bundle.
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Scattering analysis of a non-linear locally driven
potential.

N. Medina Sánchez
Universidad Nacional de Colombia

In the context of both quantum and classical theory, we present an analysis
of transmission through different non-linear potentials that are driven locally i.e
that have a explicit time dependence only in a specific region of space. These
potentials carry diferent information that the scenario when the driving is exe-
cuted in all space and shows an interesting frame to make a comparison between
de classical and quantum scattering behaviour.

Its known that a quantum periodically driven system could be solved by the
use of the Floquet theory [1]. Integrating this theory with the Bloch theory for
spatially periodic structures we develop a base of eigenfunctions able to describe
the system in all space. After that its possible to calculate transmition an re-
flections coefficients [2]. Also its known in the literature that classic analogue
of these type of potentials could induced chaos [3], a specific phenomenon that
let us identify some kind of interesting phenomena in the quantum regime that
occurs when the parameters of the potential are the same that in the chaotic
classical regime.

References
[1] Li. Wenjun, Reichl. L. E. Floquet scattering through a time-periodic poten-

tial. Phys. Rev. B. 60 (1999), 15732 - 15741.

[2] M. Grifoni, P. Hanggi. Driven quantum tunneling. Physics Reports. (1998),
229 - 354.

[3] T. Dittrich, M. Gutiérrez, G. Sinuco. Chaotic hamiltonian pumps. Physica
A: Statistical Mechanics and its applications 327 (2003), 145 - 150.

Posters Tuesday, June 23 21:00-23:00 (Posters Room) Medina Sánchez

PMNP 2015 98



Classification of nonlinear equations with
two-soliton solution

I.A. Il’in1, D.S. Noshchenko1,2, A.S. Perezhogin1,2

1Institute of Cosmophysical Research and Radio Wave Propagation
of the Far Eastern Branch of Russian Academy of Science, Russia

2 Vitus Bering Kamchatka State University, Russia

There are nonlinear equations that admit N -soliton solutions. Such equa-
tions are sometimes called the completely integrable ones. For example, hier-
archies of Lax, Sawada-Kotera (SK), Kaup-Kupershmidt (KK) equations are
well known [1, 2, 3, 4, 5, 6, 7, 8]. At present paper, we discuss nonlinear
equations with two-soliton solutions. We consider general form n-th order par-
tial differential equation with weight-homogeneous polynomial nonlinearities in
(1+1) variables En(u, ut, uxu, uxxux, ux2, . . . ). We assume an equation has a
meromorphic solution (only finite number of negative powers is contained in its
Laurent expansion).

For Lax and Sawada-Kotera hierarchies the one- and two-soliton solution is
represented by

u(x, t) = K
∂2

∂x2
log
(
1 + ep1x−q1t

)
, (1)

u(x, t) = K
∂2

∂x2
ln
(
1 + ep1x−q1t + ep2x−q2t + α12e

(p1+p2)x−(q1+q2)t
)

(2)

where qi = pni , i = 1, 2, n – order of a nonlinear equation.
The condition for two-soliton solution is considered in the paper [9]. Though,

the structure of these equations and their hierarchy are not specified.
At this work we represent equations of seventh and higher order which have

two-soliton solutions (2SS). We got one more equation of seventh order with 2SS
which differs from Lax and Sawada-Kotera ones. For higher order this equation
has a hierarchy. Also there is one more equation with 2SS solution but without
hierarchy (table 1).

The equation of type new is E7(u)

ut+ux,7+
56

K
uux,5+

56

K
ux,4ux+

140

K
ux,3ux,2+

840

K2
u2ux,3+

1680

K2
uux,2ux+

3360

K3
u3ux = 0

(3)
The equation (3) differs from Lax and Sawada-Kotera equations. There is

no term u3x of same weight as another ones.
We classified high order PDEs with polynomial nonlinearities that accept

2SS solution in Hirota’s form using the substitution (2). All En(u) equations
admit dispersion law in form qi = pni . At fig. 1 complete structure is represented.

In integrable case of 2SS coefficient α12 uniquely determines single equation
or hierarchy of equations. We discovered one hierarchy of 2SS equations of new
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Type of Order of equation Property
equation 3 5 7 9 11 13 15 17 19 21 2SS 3SS hierarchy

Lax y y y y y y y y y y z z z
SK y y y y y y z z z
new y y y z z
tail y y y y y y y z

Table 1: En classification; y denotes existence of an equation at given n, z –
existence of property

type and countable family of isolated 2SS equations of tail type. By a direct
calculation new and tail equations have no 3SS.
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Thermal Expansion of Crystalline Silicon
Nonlinear Models and Bayesian Model Selection

C. Palmisano1, T. Middelmann2, G. Gervino1, G. Mana3,
1UNITO – Università di Torino, Dipartimento di Fisica, v. P. Giuria 1,

10125 Torino, Italy
2PTB – Physikalisch-Technische Bundesanstalt, Bundesallee 100,

D-38116 Braunschweig, Germany
3INRIM – Istituto Nazionale di Ricerca Metrologica, Str. delle Cacce 91,

10135 Torino, Italy

In this paper we compare two different models, Legendre polynomials and a
semi-empirical model that combines Grüneisen equation and Einstein model of a
solid [1] to explain a set of thermal expansion measurements of monocrystalline
silicon in the temperature range from 7 K to 293 K, that were performed at
PTB [2].

Given the data x, a list of models Mi, a set of nuisance parameters ΘMi

and the likelihood L(θMi
,Mi|x), the Bayesian approach to the data analysis

consists of assigning a prior probability distribution π(θMi
|Mi) to the model-

dependent parameters and a prior probability Π(Mi) to each model. By a little
bit of algebra and introducing the evidence Z(x|Mi) = P (x|Mi), the updated
probability for the model Mi provided by the data is

Prob(Mi|x) =
Z(x|Mi)Π(Mi)∑
j Z(x|Mj)Π(Mj)

.

The evidence can be calculated by integrating over the parameter space ΘMi

Z(x|Mi) =

∫

ΘMi

L(θMi
,Mi|x)π(θ, θMi

|Mi) dθMi
.

The evaluation of the above integral becomes a formidable task when the pa-
rameter space has more than very few dimensions. Among the algorithms for
carrying out these integrations numerically, we exploited a nested sampling tech-
nique relating the likelihood values to the prior volume [3, 4]. By assuming that
data are normally distributed with given mean and variance, we calculate the
integral for evidence over multidimensional spaces and show that under these hy-
pothesis the model for thermal expansion coefficient consisting of the Grüneisen
equation combined with Einstein model of a solid is more probable than the
Legendre polynomial model.
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New brackets in Hamiltonian systems with
non-zero Berry curvature

E. V. Chulkov1,2,3,4, N. A. Kalinin 5, and A. P. Protogenov2,6

1Departamento de Física de Materiales,
Uviversidad del País Vasco, San Sebastián, Spain

2Donostia International Physics Center, San Sebastián, Spain
3Centro de Física de Materiales CFM-Materials Physics Center,

Centro Mixto CSIC-UPV/EHU, San Sebastián, Spain
4Tomsk State University, Tomsk, Russia

5Higher School of General and Applied Physics,
University of Nizhny Novgorod, Nizhny Novgorod, Russia

6Institute of Applied Physics, RAS, Nizhny Novgorod, Russia

We have studied the Hamiltonian systems with non-zero Berry curvature.
We focused on the equations of motion and found new brackets. They generalize
the Poisson brackets and provide new bracket relations between coordinate,
momentum and angular momentum.
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Approximate symmetries of partial differential
equations in viscoelasticity

M. Ruggieri, M. P. Speciale
Faculty of Engineering and Architecture,

Kore University of Enna, Italy,
email: marianna.ruggieri@unikore.it

Department of Mathematics and Computer Science,
University of Messina, Italy,
email: mpspeciale@unime.it

In many problems of physical interest differential equations contain terms
involving "small" parameters. The combined treatment of the theory of Lie
groups and perturbation analysis leads to the development of the Theory of ap-
proximate symmetries. To investigate equations involving such small terms, the
approximate symmetry perturbation approach can be used. In the framework
of nonlinear viscoelasticity, we consider the 2 × 2 system of partial differential
equations

ut − vx = 0, (1)
vt − f(u)ux = [λ(u) vx]x . (2)

By considering u as the specific volume, p(u) =
∫ u

f(s) ds the pressure, λ(u)
the viscous variable coefficient and v the velocity, the system (1)-(2) physically
describes the one-dimensional, compressible, viscous flow of a fluid, treated from
the lagrangian point of view. Particular cases of equations belonging to the
class of the system (1)-(2) can be found in [1]-[2]. Having in mind to perform
an "approximate symmetry analysis", we introduce a small parameter ε

ut − vx = 0, (3)
vt − f(u)ux = ε [λ(u) vx]x . (4)

Following [3]-[5], we perform the approximate symmetry analysis of the model
(3)-(4) and, in some physical cases, approximate solutions are computed by
means of the approximate generator of the first order approximate group of
transformations.
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Two-dimensional superintegrable quantum
systems with potentials expressed in terms of

Painlevé transcendents

M. Sajedi, P. Winternitz
Département de mathématiques et de statistique, Université de Montréal

Centre de recherches mathḿatiques, Université de Montréal

We consider quantum superintegrable Hamiltonians that admit separation
of variables in Cartesian coordinates and allow the existence of a fourth-order
integral of motion in the two-dimensional Euclidean space. The most interesting
ones involve potentials expressed in terms of Painlevé transcendents. We show
how the results are related to the third-order superintegrable systems.
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On solutions to the Burgers equation with a
periodic boundary condition on an interval

A. Samokhin,
Dept of Math., Moscow State Technical University of Civil Aviation

20 Kronshtadtsky blvd, 125993 Moscow, Russia

Properties of the solutions to the Burgers equation ut = ε2uxx − 2uux on
a finite interval x ∈ [0, L] are studied. The initial value/ boundary conditions
model a periodic perturbation on the left boundary:

u(x, 0) = a, u(0, t) = a+ b sin(ωt), ux(L, t) = 0

The asymptotics of the solution for this problem at L → ∞ coincides with
the well known Fay solution [1]. In particular, limx→+∞ u(x, t) = a, which is
the solution’s average value over x > 0.

Not so for another asymptotics, at t→ +∞. The form of the solution retains
the sawtooth profile [2],[3], yet its average over [0, L] differs from a and depends
also on the perturbation amplitude b. Interaction between two perturbations of
different frequencies is discussed.

Solutions to the nonhomogeneous Burgers equation ut − ε2uxx + 2uux =
A sin(ωt), [3], are shown to have similar properties.

The action of symmetries on the sawtooth solutions is studied.
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Hamiltonian fluid reduction of drift-kinetic
equations for non-dissipative plasmas

E. Tassi
CNRS Centre de Physique Théorique, Marseille, France

Drift-kinetic models (see, e.g. Ref. [1]) are commonly adopted to describe
the dynamics of plasmas in the presence of an intense magnetic field. Also, from
drift-kinetic equations, fluid models can be derived, which describe the evolu-
tion of a finite number of moments of the drift-kinetic distribution function.
For plasmas where dissipative effects are negligible, such as the essentially colli-
sionless plasmas of the magnetosphere or of the core of tokamak fusion devices,
drift-kinetic equations are supposed to possess a Hamiltonian structure. Their
reduction to a finite set of fluid equations, however, might in general violate
the Hamiltonian structure of the parent drift-kinetic model, depending on the
adopted closure relation. An uncontrolled closure could in particular lead to
the introduction of unphysical dissipation in the resulting fluid model.

In this contribution I will describe a closure relation that leads to a Hamil-
tonian fluid model, starting from a Hamiltonian drift-kinetic model. In the
two-dimensional (2D) limit, where translational invariance is imposed along the
direction of the dominant component of the magnetic field, the Poisson bracket
of the fluid model is obtained from a non-trivial extension of the Lie algebra
associated with the Lie-Poisson bracket of the 2D Euler equation for an incom-
pressible fluid. The extension to the 3D case can be carried out by means of
a procedure described in Ref. [2], which allows to extend to 3D a 2D Pois-
son bracket from plasma fluid models assuming a strong magnetic field along
a spatial direction. Alternatively, the Poisson structure of the fluid model can
be obtained by carrying out a change of variables which unveils the direct sum
structure of the Poisson bracket. In terms of the new set of variables, Casimirs
of the Poisson bracket for the fluid model, which turn out to be associated with
Lagrangian invariants, can also be easily derived.

The results presented in this contribution extend those described in Ref. [3].
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On a quaternionic Riccati differential equation
and generalized analytic functions

S. Tremblay
Université du Quebec Trois-Rivieres

We consider a nonlinear partial differential equation for complex quaternion-
valued functions, related to the three-dimensional stationary Schrodinger equa-
tion and supersymmetric quantum mechanics [1, 2, 3], and enjoys many prop-
erties similar to those of the ordinary differential Riccati equation such as Euler
and Picard theorems. Complex quaternionic Vekua type equations arising from
the factorization of the three-dimensional stationary Schrodinger equation are
studied. Some concepts from classical pseudoanalytic function theory [4] are
generalized onto the considered spatial case [5]. The derivative and antideriva-
tive of spatial pseudoanalytic function are introduced and their applications to
the quaternionic Riccati are considered.
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Integrable Burgers-type two-component systems
with non-diagonalizable linearity

D. Talati, R. Turhan
Department of Engineering Physics, Ankara University

We present the results of our higher symmetry classification of two-component,
second and third-order (N = 2, 3) evolutionary systems homogeneous in Burgers-
mKdV-pKdV weighting that have non-diagonalizable (ε 6= 0) constant matrices
(a = 0, 1) as the coefficient of highest order x-derivative terms:
(
u
v

)

t

=

(
a ε
0 a

)(
u
v

)

Nx

+
lower order polynomial terms

homogeneous in Burgers weighting.

Some new second and third order (symmetry) integrable systems with their
master symmetries are presented. Five out of the eight third-order systems are
observed to possess conservation laws also. One of the third-order systems is
found to be related to the Sasa-Satsuma system. We give a bi-Hamiltonian
structures of one of the new systems and comment on the structures of the
remaining three.

In the classifications of Burgers-type systems rewieved in [1], two-component
cases of [2] and those in [3] the coefficient matrix of the leading order (linear)
terms is taken to be the identity matrix. In [4] and two-component cases of [5]
the matrix is taken to be arbitrary but diagonal. Our classification covers the
non-diagonal(izable) cases of the coefficient matrix of the leading order terms.
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The inverse scattering transform for the
focusing nonlinear Schrödinger equation with a

one-sided non-zero boundary condition

B. Prinari, F. Vitale
University of Salento and University of Colorado

University of Salento

We present the inverse scattering transform as a tool to solve the initial-value
problem for the focusing nonlinear Schrödinger equation with one-sided non-zero
boundary value qr(t) ≡ Ar e

−2iA2
rt+iθr , Ar ≥ 0, 0 ≤ θr < 2π, as x→ +∞. The

direct problem is shown to be well-defined for solutions q(x, t) to the focusing
nonlinear Schrödinger equation such that [q(x, t) − qr(t)ϑ(x)] ∈ L1,1(R) [ϑ(x)
denotes the Heaviside function] with respect to x ∈ R for all t ≥ 0, for which an-
alyticity properties of eigenfunctions and scattering data are established. The
inverse scattering problem is formulated both via (left and right) Marchenko
integral equations and as a Riemann-Hilbert problem on a single sheet of the
scattering variables λr =

√
k2 +A2

r, where k is the usual complex scattering pa-
rameter in the inverse scattering transform. Unlike the case of fully asymmetric
boundary conditions [2] and similarly to the same-amplitude case dealt with in
[1], the direct and inverse problems are also formulated in terms of a suitable
uniformization variable that maps the two-sheeted Riemann surface for k into
a single copy of the complex plane. The time evolution of the scattering coeffi-
cients is then derived, showing that, unlike the case of solutions with the same
amplitude as x → ±∞, here both reflection and transmission coefficients have
a nontrivial (although explicit) time dependence. These results will be instru-
mental for the investigation of the long-time asymptotic behavior of physically
relevant solutions to the focusing nonlinear Schrödinger equation with nontriv-
ial boundary conditions, either via the nonlinear steepest descent method on
the Riemann-Hilbert problem, or via matched asymptotic expansions on the
Marchenko integral equations.
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On the Hamiltonian structure of
hydrodynamic-type systems of conservation laws

E.V. Ferapontov, M.V. Pavlov, R.F. Vitolo
Department of Mathematical Sciences,

Loughborough University UK;
Lebedev Institute of Theoretical Physics
of the Russian Academy of Sciences;

Dipartimento di Matematica e Fisica “E. De Giorgi”,
Università del Salento

The theory of quasilinear equations of first order is one of the most devel-
oped parts in integrable systems. However their Hamiltonian formulation is an
open question in general. B.A. Dubrovin and S.P. Novikov introduced the con-
cept of homogeneous differential-geometric Poisson brackets in 1983-1984. A
subclass of the hydrodynamic type systems can be equipped by first order ho-
mogeneous Hamiltonian operators. However, some hydrodynamic type systems
can be equipped by third order homogeneous Hamiltonian operators.

The first examples were found by O.I. Mokhov (2-component case, Chaplygin
gas equation) [1] and by E.V. Ferapontov, O.I. Mokhov, C.A.P. Galvao and
Ya. Nutku (3-component reformulation of WDVV equations) [2]. Recently,
R.F. Vitolo and M.V. Pavlov found a 6-component example (from the WDVV
hierarchy) [4].

In this poster we find a new criterion which allows us to effectively recon-
struct such a Hamiltonian operator if the corresponding hydrodynamic type
system is written in Casimirs, hence if the system is written as a system of
conservation laws. Conversely, the criterion can be used to describe all possible
hydrodynamic type systems for each given third order homogeneous Hamilto-
nian operator. We solve this problem using our classification of 3-component
homogeneous Hamiltonian operators [3].
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On local and nonlocal
variational constants of motion

G. Gorni, G. Zampieri
Università di Udine

gianluca.gorni@uniud.it
Università di Verona

gaetano.zampieri@univr.it

Let q(t) be a solution to Euler-Lagrange equation for a smooth Lagrangian
L(t, q, q̇), with q in an open set of Rn, and let qλ(t), λ ∈ R, be a smooth family
of perturbed motions, such that q0(t) ≡ q(t). Then the following function is
constant:

t 7→ ∂q̇L
(
t, q(t), q̇(t)

)
· ∂λqλ(t)

∣∣
λ=0
−
∫ t

t0

∂

∂λ
L
(
s, qλ(s), q̇λ(s)

)∣∣∣
λ=0

ds

(∂q̇ gradient with respect to the vector q̇ and · scalar product in Rn). This
constant of motion is generally nonlocal, and while it is often trivial or of no
apparent practical value, there are cases when it is interesting and useful.

We can get genuine first integrals for L = 1
2‖q̇‖2−U(q) with U homogeneous

of degree −2, in particular Calogero’s potential, and qλ(t) = eλ q
(
e−2λt

)
. This

example is taken from [1], while the other applications come from [2].
We also find nonlocal constants of motion which give global existence and

estimates for the solutions of the dissipative equation q̈ = −kq̇ − ∂qU(q), when
k > 0 and U : Rn → R is bounded from below. In this case the Lagrangian is
L = ekt

(
1
2 |q̇|

2 − U(q)
)
and the family is qλ(t) = q

(
t+ λ ekt

)
.

Finally, we show a nonlocal constant of motion for the Maxwell-Bloch system
in Lagrangian formulation which leads to separation of one of the variables. This
is done with the Lagrangian L = 1

2

(
q̇21 + q̇22 + q̇23 + q̇3

(
q21 + q22)

)
and the family

qλ(t) =
(
eλq1(t), e

λq2(t), e
−2λq3(t)

)
.
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Unique characteristics of multi-front solutions of
Sine-Gordon equation in higher dimensions

Yair Zarmi
Jacob Blaustein Institutes for Desert Research

Ben-Gurion University of the Negev
Midreshet Ben-Gurion, Israel 8499000

The Sine-Gordon equation in (1+2) and (1+3) dimensions is not integrable.
Still, the Hirota algorithm generates N-front solutions of that equation for all
N. Non-integrability of the equation in these higher space dimensions affects the
physical characteristics of the solutions. In (1+2) dimensions, each multi-front
solution propagates rigidly at a constant velocity, v. The solutions are divided
into two unconnected subspaces. In one sunspace the velocity of each solution
obeys v > c or v = c; in the other subspace, v < c (c = 1). Each subspace is
connected by an invertible transformation (rotation plus dilation) to the space
of front solutions of an integrable Sine-Gordon equation in two dimensions. The
faster-than-light solutions are connected to the solutions in (1+1)-dimensional
Minkowski space by a linear (rotation + dilation) transformation. The slower-
than-light solutions are connected to the solutions in 2-dimensional Euclidean
space by a similar transformation and also by Lorentz transformations. The
Sine-Gordon equation in (1+3)-dimensional Minkowski space has a richer variety
of multi-front solutions. Its slower-than-light solutions are connected to the
solutions of the integrable equation in 2-dimensional Euclidean space. However,
only a subset of its faster-than-light solutions is connected to the solutions of
the integrable equation in (1+1)-dimensional Minkowski space.
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New mechanism for mass generation:
Coupled linear wave equation and Sine-Gordon

equation in (1+2) and (1+3) dimensions

Yair Zarmi
Jacob Blaustein Institutes for Desert Research

Ben-Gurion University of the Negev
Midreshet Ben-Gurion, Israel 8499000

Coupling of the linear wave equation and the Sine-Gordon equation in (1+2)
and (1+3) dimensions offers a new mechanism for mass generation. A driving
term, which is generated from a slower-than-light, multi-front solution of the
Sine-Gordon equation, enables the linear wave equation, which in itself would
generate solutions that represent massless particles, to admit a solution that is
localized in space and emulates a free, spatially extended, massive relativistic
particle. The localized solution is an image of the junction, or junctions, at
which the Sine-Gordon fronts intersect. It propagates together with the multi-
front solution at the velocity of the latter. This result can be also formulated
through the expansion in powers of a small coupling coefficient of the Euler-
Lagrange equations of a Lagrangian system.

Posters Tuesday, June 23 21:00-23:00 (Posters Room) Zarmi

PMNP 2015 117



Equilibrium configurations of the surface of a
conducting fluid in the nonuniform magnetic

field

Zubarev N.M., Zubareva O.V.
Institute of Electrophysics, UB RAS, Ekaterinburg, Russia

A magnetic field leads to the deformation of the free surface of the fluid
placed in it. A high-frequency magnetic field penetrates only into a thin surface
layer of a conducting fluid. If the thickness of the layer is smaller than the
characteristic size of the structures on the surface, it can be assumed that the
field does not penetrate into the fluid. At times far exceeding the oscillation pe-
riod, the problem can be considered quasi-stationary. Under certain conditions,
the capillary and time-averaged magnetic pressures can equilibrate each other.
The problem of finding the corresponding equilibrium configurations is formally
equivalent to the problem of a perfectly conducting fluid in a constant magnetic
field not penetrating into the medium. Neglecting capillary forces, Shercliff [1]
applied this approach for analyzing the configurations of liquid metal columns.
Note that numerical solutions for a similar problem were obtained in Ref. [2].

We consider a problem of determining the equilibrium configurations of the
free surface of a perfectly conducting fluid that is deformed by a nonuniform
magnetic field generated by the system of parallel current-carrying linear con-
ductors. In the case of a plane geometry of the problem, where the method
of conformal mapping can be used, we obtain exact solutions of two different
problems concerning the deformation of (i) the initially flat fluid surface and of
(ii) the surface of a cylindrical jet. In the first case, two-dimensional holes are
formed under the current-carrying linear conductors located parallel to the fluid
surface. With the current growth, they are transformed into two-dimensional
bubbles covering the conductors (see also Ref. [3]). In the second case, the jet is
deformed by the transverse magnetic field until its splitting into separate jets.

This study was supported by the Ural Branch of RAS (project no. 15-8-2-8)
and by the RFBR (project no. 13-08-96010-Ural).
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