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Relative Entropy in Compressible Multi-Phase Flows

Motivation

Non-Local Model

We study compressible liquid-vapor flows described by diffuse
interface models. Such a description is computationally
advantageous as only one system of PDEs needs to be solved
on the whole computational domain. Its solution contains the
position of the phase boundary. A disadvantage of this ap-
proach is that the associated energy functional is non-convex
creating difficulties in analysis and numerics.

Classical stability results for compressible flows are based on
the relative entropy [1], requiring convexity of the energy.
Higher order 'capillarity’ effects in the model at hand allow
us to compensate for the non-convex energy and to derive
relative entropy based stability results.

Mathematical Setting

We consider a one dimensional model problem

(1)
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where 7 is the specific volume, v is the velocity, 1+ > 0 is the
viscosity parameter, v > 0 is the capillarity parameter, and
W is the energy density given by a (non-convex) constitutive
relation. We consider (1) on the flat torus, denoted by T.
Solutions of (1) satisfy the energy inequality

dt/W +;v+ (n)dx == [ p(w)dx <0. (2)

Relative Entropy

he relative entropy between two solutions (7, v) and (7, V)

of (1) is defined as
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The rate of change of relative entropy between any two strong
solutions can be controlled. As W is non-convex this is in-
sufficient for controlling the difference between the solutions.
Removing the W terms from the relative entropy we obtain:
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< /T(V — V)(W/(7 ) — W/(7 ))XdX. (3)

Combining Gronwall’s and Poincaré’s inequalities we obtain:

Lemma: Let (7,v), (7, V) be solutions of (1) with initial
data 79, 79 € H3(T) and vy, Vg € HQ(T) with 79 and Tg
having the same mean value. Then, there exists some C > 0
such that

lv(t, ) = v(t, )|z + lI7(2, ) = To(t, )| 1

< (IIvo = Wollz + 70 — ollm) exp(Ct/~). (4)

We consider a family of models in which capillarity is modeled
by non-local terms. lts solutions are parametrised in € > 0 :

—v, =0
Vi — (W/(Tg))x = [V — (Qbs * T — 7_8)X1

where ¢ is a symmetric, non-negative mollification kernel with
compact support satisfying

gbg(-)::égb@),/ s)ds =1, / (s)s’ds = 2.

Solutions of (5) satisfy the energy inequality

(5)
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Model Convergence

Using semi-group theory we can prove that, provided the ini-
tial data are sufficiently regular, (1) and (5) have strong so-
lutions for arbitrarily long times. Using a modified relative
entropy analogous to (3) we can prove:

Theorem: Let T, u,y > 0 be given. Let (7, v) and (7°, v°)
be solutions to (1) and (5), respectively, with identical initial

data in H°(T)x H?*(T). Then, the following estimate holds
uniformly for all t € (0, T) :

[75(t ) = 7(t,)lee + Vit ) = v(t, )l = OV,

i.e., solutions of (5) converge to solutions of (1) for £ — 0.
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