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Inverse Problem
Find the unknown data u in a separable Hilbert
space X from noisy observations

y = G(u) + η

• X ,Y ,X separable Hilbert spaces
• G : X 7→ X the forward map
•O : X 7→ Y bounded, linear observation operator
•G : X 7→ Y uncertainty-to-observation map, G = O ◦ G
• η ∈ Y the observational noise (η ∼ N (0, Γ))
•µ0 prior probability measure

The goal of computation is the posterior distribution

µ(du) = 1
Z exp(Φ(u))µ0(du)

with Φ : X 7→ R, Φ(u) = 1
2|y − G(u)|2Γ.

Ensemble Kalman Filter (EnKF)
•Fully Bayesian inversion is often too expensive.
•EnKF is widely used.
•Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF

EnKF for Inverse Problem
Sequence of Interpolating Measures
For N , h := 1/N , we define a sequence of measures µn � µ0, n =
1, ... ,N , which evolve the prior µ0 into the posterior distribution
µN = µ, by

µn+1(du) = Zn
Zn+1

exp(−hΦ(u))µn(du)⇔ µn+1 = Lnµn

with operator Ln corresponding to application of Bayes’ theorem
and normalisation constant Zn = ∫ exp(−nhΦ(u))µ0(du).

Ensemble of Interacting Particles
Initial ensemble {u(j)

0 }J
j=1 constructed by prior knowledge,

u(j) ∼ µ0 iid for J <∞.

Linearisation of Ln and approximation of µn by a
J-particle Dirac measure leads to the EnKF method.

Update of the EnKF for Inverse Problems

u(j)
n+1 = u(j)

n + C up
n+1(C pp

n+1 +
1
hΓ)

−1(y (j)
n+1 − G(u(j)

n ))

with empirical covariances C up
n+1 = 1

J
∑J

j=1 u(j)
n ⊗ G(u(j)

n )− un ⊗ G(un),
C pp

n+1 = 1
J
∑J

j=1 G(u(j)
n ) ⊗ G(u(j)

n ) − G(un) ⊗ G(un), mean un = 1
J
∑J

j=1 u(j)
n ,

G(un) = 1
J
∑J

j=1 G(u(j)
n ) and observations y (j)

n+1 = y + η(j)n+1, η
(j)
n+1 ∼ N(0, 1hΓ).

Continuous Time Limit
Limiting SDE
Interpreting the iterate as u(j)

n = u(j)(nh) gives

du(j) = C upΓ−10 (y − G(u(j))) dt + C upΓ
−1

2
0 dW (j) ,

where W (1), ... ,W (J) are pairwise independent cylindrical Wiener
processes.

•Deriving the continuous time limit allows to deter-
mine the asymptotic behaviour of important quan-
tities of the algorithm.

•The continuous approach offers the possibility to
improve the performance of the method by choos-
ing appropriate numerical discretisation schemes
based on the properties of the solution.

•Based on the analysis of the SDE, strategies to
adaptively control the approximation quality of the
subspace spanned by the ensemble can be devel-
oped.

•This approach is not limited to the linear case and
may give also some insights for the nonlinear case.

Groundwater Flow Problem
Model Problem
We consider steady groundwater flow in a two-
dimensional confined aquifer governed by the following equation

−∇ · κ∇h = f

with piezometric head h, source f and hydraulic conductivity κ.

Uncertainty in the hydraulic conductivity κ

Typical models for κ are log-normal priors or more realistic
multipoint prior, which are able to capture the channelized nature
of rock formations in the subsurface.

Measurements
Measurements are comprised of
Gj(κ) = h(xj) for some set of points
{xj}K

j=1 in the physical domain.
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