
Relative Entropy in Compressible Multi-Phase Flows

Motivation
We study compressible liquid-vapor flows described by diffuse
interface models. Such a description is computationally
advantageous as only one system of PDEs needs to be solved
on the whole computational domain. Its solution contains the
position of the phase boundary. A disadvantage of this ap-
proach is that the associated energy functional is non-convex
creating difficulties in analysis and numerics.
Classical stability results for compressible flows are based on
the relative entropy [1], requiring convexity of the energy.
Higher order ’capillarity’ effects in the model at hand allow
us to compensate for the non-convex energy and to derive
relative entropy based stability results.

Mathematical Setting
We consider a one dimensional model problem

τt − vx = 0
vt −W ′(τ )x = µvxx − γτxxx

(1)

where τ is the specific volume, v is the velocity, µ ≥ 0 is the
viscosity parameter, γ > 0 is the capillarity parameter, and
W is the energy density given by a (non-convex) constitutive
relation. We consider (1) on the flat torus, denoted by T.
Solutions of (1) satisfy the energy inequality
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Relative Entropy
The relative entropy between two solutions (τ , v) and (τ , v)
of (1) is defined as
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The rate of change of relative entropy between any two strong
solutions can be controlled. As W is non-convex this is in-
sufficient for controlling the difference between the solutions.
Removing the W terms from the relative entropy we obtain:
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Combining Gronwall’s and Poincaré’s inequalities we obtain:
Lemma: Let (τ , v), (τ , v) be solutions of (1) with initial
data τ0, τ 0 ∈ H3(T) and v0, v 0 ∈ H2(T) with τ0 and τ 0
having the same mean value. Then, there exists some C > 0
such that

‖v(t, ·)− v(t, ·)‖L2 + ‖τ (t, ·)− τ 0(t, ·)‖H1

≤
(
‖v0 − v 0‖L2 + ‖τ0 − τ 0‖H1

)
exp(Ct/γ). (4)

Non-Local Model
We consider a family of models in which capillarity is modeled
by non-local terms. Its solutions are parametrised in ε > 0 :

τ εt − v εx = 0
v εt − (W ′(τ ε))x = µv εxx − (φε ∗ τ ε − τ ε)x ,

(5)

where φ is a symmetric, non-negative mollification kernel with
compact support satisfying

φε(·) :=
1
ε
φ

( ·
ε

)
,
∫ ∞
∞
φ(s) d s = 1,

∫ ∞
∞
φ(s)s2 d s = 2γ.

Solutions of (5) satisfy the energy inequality
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Model Convergence
Using semi-group theory we can prove that, provided the ini-
tial data are sufficiently regular, (1) and (5) have strong so-
lutions for arbitrarily long times. Using a modified relative
entropy analogous to (3) we can prove:
Theorem: Let T ,µ, γ > 0 be given. Let (τ , v) and (τ ε, v ε)
be solutions to (1) and (5), respectively, with identical initial
data in H3(T)× H2(T). Then, the following estimate holds
uniformly for all t ∈ (0,T ) :

‖τ ε(t, ·) − τ (t, ·)‖L2 + ‖v ε(t, ·) − v(t, ·)‖L2 = O(ε1/4),

i.e., solutions of (5) converge to solutions of (1) for ε→ 0.
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