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Introduction
The movement of a crane where the load must follow a pre-
scribed trajectory is typically modeled by a multibody system
with servo constraints. These models often are differential-
algebraic equations (DAEs) of index 5,

M ..x = A .x + Bu + f ,
Cx = yopt.

We search for the input u in order to fulfill the constraint
Cx = yopt. Because of the high index structure,
• the system is very sensible to perturbations,
•numerical simulations require an index reduction, e.g. by
→ projection approach [BlaK04]
→ minimal extension [AltBY14]

We replace the servo constraint by a minimization approach,
i.e., we minimize the cost functional

J (x , u) := S(x(T )) + 1
2
∫ T

0
‖Cx − yopt‖2 +

ν∑
i=0

βi‖u(i)‖2 dt,

where x satisfies M ..x = Ax + Bu + f and S(x(T )) :=
γ1
2‖Cx(T )− yopt(T )‖2. Thus, we try to make the difference

Cx − yopt small but also penalize the input variable u.

2-Car Example
Aim: control position of second car x2 by the input force u.
• variables: positions x1, x2 and input force u
•spring constant k , resting distance d
•desired trajectory of x2 given by yopt

u

x1 x2

km1 m2

The dynamics are given by the index-5 DAE

m1
..x 1 = k(x2 − x1 − d) + u,

m2
..x 2 = −k(x2 − x1 − d),
x2 = yopt.

Note that a continuous solution u requires yopt ∈ C 4(0,T ).

Numerical Example
Numerical simulation of the 2-car example for ν = 0, different
values of β0, and parameters
•m1 = 1, m2 = 2, k = 10, d = 0.5
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The figure shows that a good approximation of yopt can al-
ready be achieved with a much smaller input force u than
given by the exact DAE solution.

Optimality System
The formal optimality system is given as

M ..x = Ax + Bu + f ,
MT ..

λ = ATλ− CTCx + CTyopt,
0 =

ν∑
i=0

(−1)iβiu(2i) − BTλ

Depending on ν, the last equation reads, e.g.,
•case ν = 0: 0 = β0u − BTλ

→ DAE of index 1
•case ν = 1: 0 = β0u − β1

..u − BTλ

→ ODE
The resulting boundary-value problems can be solved via
•finite differences (full discretization)
•Riccati ansatz
• shooting methods
Remark: With additional holonomic constraints, the for-
mal optimality system contains consistency conditions. Thus,
the system may not have a solution because of inconsistent
boundary conditions.
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