
Efficient Nonlinear Homogenization
potential-based Reduced Basis Model Order Reduction (pRBMOR)

Young Investigator Group “Computer Aided Material Modeling”, Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Dipl. Math.-techn. Matthias Leuschner, March 2015

Introduction
Microscopic material heterogeneities are considered through
representative volume elements (RVEs) in two-scale mechan-
ical analyses. Nonlinearities generated by dissipative effects
(e.g. viscoplasticity) or a separation at the phase bound-
aries necessitate iterative procedures to compute the RVE re-
sponse. Due to the enormous numbers of RVE problems to
be solved in realistic simulations, order reduction techniques
are needed to reduce the computational cost to manageable
amounts.

Effective material model

•RVE state is characterized by the mode coefficient
vectors ζ̂ , ν̂, ξ̂, λ̂ and the prescribed effective strain ε̄

• effective material law is expressed as a GSM using averages
of the microscopic potentials ψΩ, φ∗
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∗
S

• variational calculus leads to nonlinear equations which define
the evolution of the mode coefficients

pRBMOR scheme
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Offline

numerical experiments (FE)

mode identification (POD)

eigenanalysis

Online

solve low-dimensional system of nonlinear equations

speedup over full-field simulations on the order of 102

further speedup around 102 by GPU implementation [2]
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Microscopic material models

•bulk material is assumed to belong to the class of
generalized standard materials (GSM) [1]

• interfacial behavior is characterized within the framework of
standard dissipative cohesive zones (SD-CZ) [3]

GSM (bulk) SD-CZ (interface)
free energy density ψΩ ≡ ψe

Ω(ε, εp) + ψh
Ω(q̂) ψS ≡ ψS (δ, ŷ)

kinematic variable infinitesimal strain ε separation δ

internal variables plastic strain εp
ŷhardening variables q̂

static variable Cauchy stress σ = ∂ψΩ
∂ε

traction t = ∂ψS

∂δ

driving forces (σp, r̂) = − ∂ψΩ
∂(εp, q̂)

ẑ = −∂ψS

∂ŷ

dual dissipation φ∗
Ω ≡ φ∗

Ω(σp, r̂) φ∗
S ≡ φ∗

S (ẑ)

evolution law
(
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)
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Ω

∂(σp, r̂)
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∂ẑ

Reduced basis ansatz

δ(x) = ∆̂(x)ζ̂ , ŷ(x) = Ŷ (x)ν̂, εp(x) = P̂ (x)ξ̂, q̂(x) = Q̂(x)λ̂

• express separation and internal variables via global bases
•define relocalization operators ∆̂, Ŷ , P̂ , Q̂ column-wise by
the global basis vectors (modes)

•derive modes from pre-computed solutions of the RVE prob-
lem through a proper orthogonal decomposition (POD)

• solve auxiliary problems to find self-equilibrated stress fields
that ensure static admissibility for any ζ̂ , ξ̂ (eigenanalysis)
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