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potential-based Reduced Basis Model Order Reduction (pPRBMOR)

Introduction

Microscopic material heterogeneities are considered through

representative volume elements (RVEs) in two-scale mechan-
ical analyses. Nonlinearities generated by dissipative effects
(e.g. viscoplasticity) or a separation at the phase bound-
aries necessitate iterative procedures to compute the RVE re-
sponse. Due to the enormous numbers of RVE problems to
be solved in realistic simulations, order reduction techniques
are needed to reduce the computational cost to manageable
amounts.
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Microscopic material models

e bulk material is assumed to belong to the class of
generalized standard materials (GSM) [1]

e interfacial behavior is characterized within the framework of
standard dissipative cohesive zones (SD-CZ) [3]
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e express separation and internal variables via global bases
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e define relocalization operators A,?,P,Q column-wise by
the global basis vectors (modes)

e derive modes from pre-computed solutions of the RVE prob-
lem through a proper orthogonal decomposition (POD)

e solve auxiliary problems to find self-equilibrated stress fields
that ensure static admissibility for any (, & (eigenanalysis)

Effective material model

e RVE state is characterized by the mode coefficient
vectors (, 7, &, A and the prescribed effective strain &

e effective material law is expressed as a GSM using averages

of the microscopic potentials ¥, ¢, V.o, O,
e variational calculus leads to nonlinear equations which define

the evolution of the mode coefficients

pRBMOR scheme
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periodic RVE geometry

numerical experiments (FE)

mode identification (POD)

eigenanalysis

solve low-dimensional system of nonlinear equations

speedup over full-field simulations on the order of 10?

further speedup around 10° by GPU implementation [2]
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