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MS4

MS4: Optimal Control and Hybrid Systems

On the one hand, optimal control of real physical processes is of crucial importance in all modern technological
sciences. On the other hand, extensive research has been made in the field of hybrid systems in the last decades,
since it is well known that the behavior of modern technical systems can only be modeled appropriately by a
combination of continuous dynamics and discrete events models. Relevant applications are for example mechan-
ical systems with impacts, power and electronic systems with switches, or complex networks whose coupling
structure changes at discrete events. A great interest lies in the optimal control of hybrid systems since this
includes not only the computation of optimal control trajectories for the continuous parts but also an optimiza-
tion of the discrete variables.

The topics in this minisymposium are the analysis and control of hybrid and switched systems, switching-
time optimization, mixed-integer optimization for ODE and PDE systems as well as applications in engineering
systems and robotics such as bipedal walking.
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Sequential Action Control for Nonlinear and Hybrid Systems

T.D. Murphey
Northwestern University

Sequential Action Control (SAC) [1] is a control technique based on ideas from hybrid control theory. The
idea behind SAC is that one wants to optimize the next control action (defined by a control vector u at a specified
time t for a specified duration λ) that improves some cost J by a specified amount α ∈ R. These actions can then
be sequenced to form a discrete-time feedback law, applicable to any nonlinear control system. Surprisingly, for
any smooth objective function J =

∫ tf
t0
`(x, t)dt +m(x(tf )) and dynamic constraint ẋ = g(x) + h(x)u (almost

everywhere differentiable with respect to x), optimizing J2 =
∫ tf
t0

1
2 [
dJ
dλ − α]2 + ||u||2dt with respect to u has a

unique solution that depends only on the evaluation of x(t) over the time horizon and evaluation of the adjoint
variable ρ(t) over the same time horizon. In J2, dJ

dλ is the needle variation that arises in optimal control and
hybrid control, so optimizing this expression essentially sets the needle variation equal to α (regularized by the
norm on u). Interestingly, the optimal choice of u is a Tikonov regularization; as a consequence it scales nicely
with respect to state. The resulting control is a new type of “local” controller, in the sense that J2 is a local
model of J that one optimizes to obtain a control value. Typically local controllers are local with respect to a
trajectory x(t) (e.g., linear quadratic regulators), whereas SAC is local both with respect to the state and the
duration of application, but it is global with respect to the time horizon tf and does not locally approximate
the dynamics (in contrast to linear quadratic controllers). To obtain a control signal, one may compute these
control actions in a sequence, updating as the state updates, so the control calculation is naturally of the form
of a feedback law. Moreover, one may optimize over when the next control action is taken, since the next control
action is well defined for all time t up to tf . Lastly, since the control is optimal for a infinitesimal duration λ,
a backtracking line search may be used to determine the finite duration of the action.

Sequential Action Control is effective across a relatively wide variety of nonlinear and nonsmooth problems.
It solves a variety of benchmark problems, including cart-pendulum swing up [2], acrobot swing up [3], pendubot
swing up [4], and the minimum time parking problem. In these examples, SAC outperforms best-case solutions
in the literature. Compared to direct optimization techniques based on sequential dynamic programming (SQP),
SAC finds a solution to the acrobot swing up problem 107 times faster than SQP. A change of seven orders of
magnitude in computational requirement changes what types of control problems are tractable, particularly as
the dimension of an optimal control problem increases.

Other typical requirements for optimal control calculations are also easier to compute using SAC than in
many methods for nonlinear and hybrid control. For instance, SAC natively admits control saturation, and
incorporates unilateral state constraint easily. Moreover, SAC is guaranteed to be linear near equilibria, so local
stability can be assessed using standard techniques (e.g., using sum of squares (SOS) techniques).

Lastly, SAC is as easy to compute for hybrid systems as it is for smooth systems. This is because the adjoint
variable ρ(t) can be computed for a given trajectory so long as there are only a finite number of discontinuities
in the dynamics. Applying SAC to hopping/running control for SLIP models of human and animal locomotion
[5] leads to reliable motion control including nonlinear dynamics and challenging terrain that includes both
nonlinearities and nonsmooth characteristics.

References
[1] A. Ansari and T.D. Murphey. Sequential Action Control: Closed-Form Optimal Control for Nonlinear

Systems. IEEE Transactions on Robotics (Submitted).

[2] K.J. Astrom and K. Furuta. Swinging up a pendulum by energy control. Automatica 36(2) (2000), 287-295.

[3] M.W Spong. The swing up control problem for the acrobot. IEEE Control Systems 15(1) (1995), 49-55.

[4] M.W Spong and D.J Block. A mechatronic system for control research and education. In IEEE Conference
on Decision and Control (1995), 555-556.

[5] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer. The Dynamics of Legged Locomotion: Models,
Analyses, and Challenges. SIAM Review 48(2) (2006), 207-304.
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Output Regulation in Differential Variational Inequalities using
Internal Model Principle and Passivity-Based Approach

Aneel Tanwani
Department of Mathematics, University of Kaiserslautern, Germany

In this talk, we consider the problem of designing feedback control laws for output regulation in systems
with differential variational inequalities (DVIs). In addition to ordinary differential equations, DVIs comprise
variational inequalities (VIs) which describe algebraic constraints and relations on the state trajectories [1]. The
class of DVIs considered in this paper are described as follows:

ẋ(t) = f(t, x) +Gλ(t) (1a)
v(t) = Hx(t) + Jλ(t), v(t) ∈ S(t), (1b)
〈v′−v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t). (1c)

where S : [0,∞) ⇒ Rds is a set-valued mapping, and it is assumed that S(t) is closed, convex, and nonempty,
for each t ≥ 0. The variational inequalities expressed in (1c) find utility across many applications [2] and may
be used to express optimality conditions, mechanical systems with impacts, and electrical circuits with diodes.
While VIs can also be written using the notion of (set-valued) normal cone operators so that the differential
inclusion resulting from (1) has maximal monotone operators, the introduction of matrices G,H, J and the
vector field f(·, ·) may not preserve monotonicity which makes it difficult to study the solution of such systems.
From control point of view, the discontinuities in the description of such systems are state-dependent which
introduces several complexities in designing feedback control laws.

To address these issues [3], we first derive conditions to study the existence and uniqueness of solutions
in such systems. It is shown that under certain conditions on the system data, the given system could be
equivalently written as a differential inclusion where the right-hand side is the sum of a multivalued maximal
monotone operator and a Lipschitz-continuous function. Such inclusions are then shown to possess unique
solutions. For the output regulation problem, we let f(t, x) := Ax+Bu(t) + Fxr(t), where xr is an exogenous
signal generated by an exosystem, and our objective is to design feedback control u such that the resulting
closed-loop system is well-posed and the state x asymptotically tracks xr. The derivation of control laws is
based on the use of internal model principle, and two cases are treated: first, a static feedback control law is
derived when full state measurements are available; In the second case, only the error to be regulated is assumed
to be available for measurement and a dynamic compensator is designed. Under the condition that the closed-
loop system can be rendered passive, we show that the overall system is indeed well-posed and the desired error
variable indeed converges to the origin. As applications, we demonstrate how control input resulting from the
solution of a variational inequality results in regulating the output of the system while maintaining polyhedral
state constraints. Another application is seen in designing switching signals for regulation in power converters.

References
[1] J.-S. Pang and D.E. Stewart. Differential variational inequalities. Math. Prog., Ser. A, 113:345 – 424, 2008.

[2] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their Applications.
Ser. Classics in Applied Mathematics, SIAM, 2000.

[3] A. Tanwani, B. Brogliato and C. Prieur. On output regulation in systems with differential variational
inequalities. In Proc. 53rd IEEE Conf. Decision & Control, 2014.
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Gene regulatory networks: equivalence between Utkin’s and
sigmoidal approach

Del Buono N., Elia C., Lopez L.
University of Bari

Mathematical models of gene regulatory networks have received increasing attention in the literature in
the past decades. One of the pioneering approaches, due to Glass and Kauffman ([1]), proposes piecewise
linear control systems to model gene networks. However, a major concern with such models is that the vector
field is not defined on (the intersection of) discontinuity hyperplanes. To overcome this issue, Utkin’s and
Filippov’s approaches have been employed in literature, even though they are in general both ambiguous on the
intersection of discontinuity hyperplanes. An alternative continuous model of gene networks, based on steep
sigmoidal functions, has been given more recently by Plahte and Kjoglum in [2]. Our purpose in this talk
is twofold: show that Utkin’s approach gives a unique vector field on the intersection Σ of two discontinuity
hyperplanes (under assumptions of attractivity), and investigate when Utkin’s approach and the steep sigmoidal
approach are equivalent, i.e., when the corresponding solutions on Σ are the same. This allows one to study the
piecewise dynamical system, and hence the gene regulatory network it models, with no ambiguity.

References
[1] Glass, L., Kauffman, S. A. The logical analysis of continuous, non-linear biochemical control networks.

Journal of Theoretical Biology 39. (1973), 103-129.

[2] Plahte, E., Kjóglum, S. Analysis and generic properties of gene regulatory networks with graded response
functions. Physica D 201 (1). (2005), 150-176.

[3] Del Buono N., Elia C., Lopez L., On the equivalence between the sigmoidal approach and Utkin’s approach
for models of gene regulatory networks. Siam Journal on Applied Dynamical Systems 13 (3). (2014). 1270-
1292.
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On the value function of mixed-integer optimal control problems

Martin Gugat, Falk M. Hante

We present sensitivity analysis for the optimal value ν = inf Φ(y) with y given by a control problem that
involves both continuous and discrete control decisions u and v, respectively:

ẏ = Ay + f(y, u, v), u ∈ U(v) on (t0, tf ), y(t0) = y0,

where the pair (A, f) represents an abstract semilinear evolution system on a Banach space and the sets U(v)
represents control constraints.

For parametric initial data y0 = y0(λ), we obtain local Lipschitz continuity of the optimal value function
ν(λ) for rather mild regularity assumptions on the pair (A, f). The result ist based on a characterization of
the optimal value function using a reduction to operational differential inclusions using the theory of [1]. For
parametric control constraints U(v) = U(v, λ) given in terms of inequalities, we obtain the same regularity
for convex programs satisfying a Slater-type constraint qualification. In this case, we can give an explicit
representation of the one-sided derivatives of the optimal value function ν(λ). The result is based on a strong
duality result for parametric disjunctive programming [2].

Our analysis can be applied to assess the robustness of mixed-integer optimal controls even for certain control
problems involving partial differential equations and being generated for example by relaxation methods [3].

References
[1] H. Frankowska. A priori estimates for operational differential inclusions. J. Differential Equations, 84(1):100–

128, 1990.

[2] M. Gugat. Parametric disjunctive programming: one-sided differentiability of the value function. In Journal
of Optimization Theory and Applications, 92(2):285–310, 1997.

[3] F.M. Hante, S. Sager. Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equa-
tions. Computational Optimization and Applications, Vol. 55, Nr. 1, pp 197–225, 2013.
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Relaxing mixed integer optimal control problems using a time
transformation

M. Ringkamp∗, S. Leyendecker∗, S. Ober-Blöbaum#

∗ Chair of Applied Dynamics, University of Erlangen-Nuremberg
# Computational Dynamics and Optimal Control, University of Paderborn

Nonlinear control systems with instantly changing dynamic behavior can be described by differential equa-
tions ẋ = F (x, u, v) that depend on an integer valued control function v ∈ L∞(I,V), mapping the time interval
I = [t0, tf ] to the integer values V = {1, . . . , nV}. Such systems occur for example in the optimal control of a
driving car with different gears [1], or a subway ride with different operation modes [2], leading to a mixed integer
optimal control problem (MIOCP). A discretize-then-optimize approach leads to a mixed integer optimization
problem that is not differentiable with respect to the integer variables, such that gradient based optimization
methods can not be applied. Differentiability with respect to all optimization variables can be achieved by
reformulating the MIOCP, e.g. by using a relaxed binary control function [2], or by introducing a fixed integer
control function v̄N,n ∈ L∞(I,V) and a time transformation tw ∈ W1,∞(I, I) that allows to partially deactivate
the fixed integer control function [1]. The latter approach is presented here, while the main focus lies on new
theoretical and numerical results that take different functions v̄N,n into account.

The time interval I is partitioned into N major intervals Ij , each Ij into n minor intervals Iij and v̄N,n
is defined to be constant on each of the minor intervals Iij . The combination of v̄N,n and a time control
w ∈ L∞(I,R) with w(τ) = dtw

dτ (τ) = t′w(τ) for a.e. τ ∈ I results in the following time transformed MIOCP
(TMIOCP):

min
x,u,w

J∗(x, u, w) =

∫

I

w(τ)B(x(τ), u(τ), v̄N,n(τ)) dτ

s. t. ẋ(τ) = w(τ)F (x(τ), u(τ), v̄N,n(τ)) for a.e. τ ∈ I
g0(x(τ), u(τ)) ≤ 0 for a.e. τ ∈ I

w(τ)g(x(τ), u(τ), v̄N,n(τ)) ≤ 0 for a.e. τ ∈ I
r(x(t0), x(tN )) = 0

w(τ) ≥ 0 for a.e. τ ∈ I

∆Ij =

∫

Ij

w(s)ds

Here, J is the objective functional, g0 and g are inequality constraints and r represents the boundary conditions.
A fixed integer control function v̄N,n is called control consistent (CC), if a switch of v at any time in a major
interval Ij from a value l1 ∈ V to a value l2 ∈ V can be achieved with v̄N,n by scaling the minor intervals Iij ,
in particular some minor intervals can be deactivated by scaling to zero. The optimal trajectory resulting from
the TMIOCP using a CC fixed integer function v̄N,n can coincide with the optimal trajectory of the MIOCP. In
contrast to that, the optimal trajectory resulting from the TMIOCP in the case that v̄N,n is not CC (NCC) can
result in a higher objective value. Examples demonstrate this and furthermore that solving a TMIOCP using
a CC fixed integer control function v̄N,n can lead to a lower number of discretization variables as a TMIOCP
that utilizes a fixed integer function that is NCC. The number of necessary discretization variables depends on
the total number of used minor intervals and it is shown that the total number can be unbounded in the NCC
case and is bounded in the CC case, even though the number of minor intervals for each major interval can be
lower in the NCC case. An extension to bipedal walking models is planed in future works.

References
[1] M. Gerdts. A variable time transformation method for mixed-integer optimal control problems. Optimal

Control Applications and Methods, Vol. 27, No. 3, pp. 169–182, 2006.

[2] S. Sager, H.G. Bock, G. Reinelt. Direct methods with maximal lower bound for mixed-integer optimal control
problems. Mathematical Programming, Vol. 118, No. 1, pp. 109–149, 2009.
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Optimal Energy-Based Control of Hybrid Systems
with Applications to Robotic Walking

Ryan W. Sinnet and Aaron D. Ames
Texas A&M University

Over the last fifty years, researchers have addressed the problem of bipedal robotic locomotion using a range
of approaches with varying degrees of formality [3]. In this presentation, we are interested in one particular
approach known as energy shaping. The main idea behind energy shaping approaches involves using the structure
of energy to create stabilizing controllers for periodic behaviors in dynamical systems. The primary focus is
on recent results [5] which demonstrate an optimal controller for stabilizing the energy dynamics of periodic
behaviors in hybrid mechanical system while maintaining exponential stability of the overall hybrid systems.

The development of energy shaping approaches spans the past few decades although energy-based approaches
to analytical mechanics date back over 200 years to the work of Lagrange and the principles of stability involved
were first presented by Lyapunov over 100 years ago. The ideas herein also build on more recent results spread
throughout the literature. Over the last few decades, researchers have presented control schemes which seek to
achieve periodic behaviors in dynamical systems and bipedal walking in particular by formulating their control
objectives in terms of the energy of a system. Based on McGeer’s observation that compass-gait bipeds1 with
appropriate mass distributions can walk down shallow slopes without actuation [4], Spong presented controlled
symmetries [8] as a method for obtaining walking on a compass-gait biped on flat ground by injecting energy in
a such a way that the shaped potential energy of the robot’s gait on flat ground mimicked the potential energy
of a passive biped walking down a slope. Based on this idea, Spong later provided a controller which could
shape the total energy of a compass-gait biped and showed that the controller would guarantee asymptotic
stability of the energy dynamics to a reference level, Eref , through the continuous dynamics although nothing
was formally established with regards to stability of the overall system. He later demonstrated how the ideas
could be extended to non-conservative systems [8] by considering energy storage functions. While the compass-
gait biped is of interest as a low-dimensional example of walking, the same method of controlled symmetries
has been used as a basis for achieving walking in more complex models with knees and non-trivial foot action
[6] and has been extended to three-dimensional bipeds using functional Routhian reduction [7].

The energy shaping problem, as formulated herein, falls under a class of problems involving stability of
systems with zero dynamics. In [1], a similar problem was considered in which a stabilizing control law was
constructed using control Lyapunov functions to stabilize to a zero dynamics which exhibited hybrid invariance;
that is, for initial conditions on the intersection of the switching surface and the hybrid zero dynamics manifold,
application of the reset map will result in a state which is still on the hybrid zero dynamics. This was a key
assumption underlying [1] but this assumption does not hold for energy shaping as energy is generally not
invariant through impact, though there may be pathological examples which demonstrate this property. In fact,
for certain conservative systems like the compass-gait biped, which exhibits local exponential stability, energy
change can only occur through discrete transitions and so impacts actually act as a stabilizing influence.

In order to apply energy shaping, one begins with an autonomous hybrid mechanical system with position
and velocity coordinates (q, q̇) which contains a locally exponentially stable periodic orbit, possibly induced by
some feedback control law. For systems of this type, a conserved energy quantity exists through the continuous
dynamics and it comprises kinetic and potential energy as well as an additional term. This additional term can
be treated with a storage function which tracks the energy flowing out of the system; such energy flow occurs
due to non-conservative forcing. For periodic behaviors, this conserved quantity, expressed as

Ec = T (q, q̇) + U(q)−
∫ t

0

Fnc(q(τ), q̇(τ)) ·
dq(τ)

dτ
dτ

with the terms respectively representing kinetic energy, potential energy, and stored energy, is also periodic and,
by resetting the storage function appropriately through the discrete dynamics, can be made to be a constant.
Using the conserved quantity, which is a function of the system state, and its constant reference level, one can
design an energy shaping controller to drive the conserved energy of the system to the reference level, thereby
stabilizing the system’s energy dynamics. The particular approach discussed achieves this energy stabilization
through the use of a rapidly exponentially stabilizing control Lyapunov function (RES-CLF) [1, 2]. Roughly

1Video of a compass-gait biped available online http://youtu.be/mwugDGGhPmI.
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speaking, one must choose control inputs such that the energy of the system is exponentially stable through the
continuous dynamics. This is done by constructing the Lyapunov candidate function V (q, q̇) = (Ec(q, q̇)−Eref )

2.
Because V̇ (q, q̇, u) = LfV (q, q̇) + LgV (q, q̇)u is affine with respect to the control input, the problem can be
posed as a quadratic program operating on a convex set:

µε(q, q̇) = argmin
u∈Rm

uT u

s.t. LfV (q, q̇) + LgV (q, q̇)u+
c3
ε
V (q, q̇) ≤ 0.

This results in an optimal controller that can be evaluated with relatively low computational cost. In addition to
being easy to solve, this formulation confers the added benefit of allowing torque limitations as well as constraints
on friction and on ground reaction forces, although doing so may destroy feasibility. With no constraints, the
solution is feasible and is known in closed form, often referred to as the pointwise min-norm controller [2].

In contrast to its predecessors, it has been formally shown that the presented controller maintains exponential
stability of the hybrid system to which it is applied for small enough control gains. Although formal results
regarding the robustness of the shaped system to perturbations in initial conditions have not yet been established,
simulations show that the method can result in a larger domain of attraction and shorter stabilization times for
limit cycles of certain systems. Indeed simulation results are provided for a cart–spring system to demonstrate
improved convergence properties and for a compass-gait biped to demonstrate the robustness improvement that
can be conferred by energy shaping. Despite the lack of formal claims with respect to global properties, the
local stability properties are practically useful when using energy shaping as a stabilizing controller in operating
regions around the desired behavior. Ultimately, the goal will be to apply these methods to complex biped and
humanoid robots with a view toward robotic–assistive devices.
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