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YRMS5

YRMS5: Topics in Low-rank Tensor Approximation

The recent years showed an emerging interest in low-rank tensor techniques in scientific computing for solving
”high-dimensional” tensor structured problems to overcome the curse of dimension by using separation of
variables. This includes eigenvalues problems, linear equations, stochastic and parametric PDEs, dynamical
systems, or ground state calculations in quantum spin systems. At the same time, low-rank tensor techniques
are successfully used in exploratory data analysis, signal processing, and statistics. Ideally, at least three
aspects need to be addressed: justification of the low-rank approach by a-priori approximability results, design
and efficient implementation of algorithms avoiding ”high-dimensional” objects at any stage, and convergence
analysis of the typically nonlinear methods. These and other challenging tasks make low-rank tensor techniques
an interesting and many-sided field. This Young Researchers Symposium will highlight some of these aspects
at the hand of the speaker’s latest research results.
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Finding low-rank bases of matrix subspaces

Yuji Nakatsukasa1, Tasuku Soma1, André Uschmajew2

1University of Tokyo, Japan
2University of Bonn, Germany

Given a d-dimensional matrix subspace spanned by matrices M1,M2, . . . ,Md ∈ Rm×n, one can ask whether
this subspace contains a basis of low-rank matrices. Having such a basis, it is easy to imagine useful applications,
for instance a compressed storage of the initial matricesM1,M2, . . . ,Md. It is interesting to note that the specific
question of whether a basis of rank-one matrices exists is equivalent to the question, whether the m × n × d
tensor with slices M1,M2, . . . ,Md has canonical tensor rank d. In general, the task is twofold: if one knows the
smallest ranks for which a basis exists, one can design many optimization procedures to hopefully find such a
basis. For instance, if a rank-one basis exists, one may use tensor decomposition algorithms like alternating least
squares. For the case of higher ranks, we propose a simple alternating projection strategy with hard singular
value thresholding, and investigate its convergence to some extent. The hard task, however, is to estimate the
smallest possible ranks a basis can have. We present a heuristic based on nuclear norm minimization (soft
thresholding) and, again, alternating projections, which works astonishingly well.

YRMS5 Monday, March 23 16:30-16:50 (Masaccio Room) Uschmajew
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Decoupling multivariate functions using tensor decompositions

Philippe Dreesen, Mariya Ishteva, Johan Schoukens

Vrije Universiteit Brussel, Dept. VUB-ELEC, Brussels, Belgium

We present a method to decompose a set of multivariate real functions into linear combinations of univariate
functions in linear forms of the input variables [3]. The procedure collects first-order information by evaluating
the Jacobian matrix of the function in a set of points. A tensor decomposition of the tensor constructed from
the Jacobian matrices provides the decoupled representation.

Let f : Rm → Rn be a given multivariate real function that allows a parameterization

f(u) = Wg(VTu), (1)

where W ∈ Rn×r and V ∈ Rm×r are unknown linear transformations, and g : Rr → Rr is an unknown vector
function consisting of univariate functions gi(xi), i.e., every component of g only depends on a single variable
xi, which is the i-th component of VTu, or xi = vT

i u.
The decoupling method proceeds by considering the first-order information of the functions fi(u), which is

captured by the n×m Jacobian matrix J(u) = [∂fi(u)/∂uj ]. By using the parameterization (1), the Jacobian
matrix J(u) can be written as

J(u) = W diag(g′i(v
T
i u))V

T .

The Jacobian is evaluated in the points u(1), . . . ,u(N), resulting in the Jacobian matrices J(u(1)), . . . ,J(u(N)),
which we stack into a three-way tensor J having dimensions n × m × N . Finding the unknowns in the
parameterization (1) then amounts to solving a simultaneous matrix diagonalization problem, which is computed
using the canonical polyadic decomposition [5]. Indeed, we can write the tensor of Jacobians as

J =
r∑

i=1

wi ◦ vi ◦ hi, (2)

where ◦ denotes the outer product. Decomposition (2) directly returns the unknowns W and V, as well as the
necessary information to reconstruct the univariate functions gi(xi).

A variation of the decoupling method employs the block-term tensor decomposition [1, 2] instead of the
canonical polyadic decomposition, making it possible to achieve partial decoupling. In a similar fashion, now
a number of internal multivariate functions acts between smaller sets of internal partially coupled variables,
rather than one-to-one univariate functions.

We will highlight applications in block-oriented system identification [4] where the above procedure is em-
ployed to decouple multiple-input-multiple-output static nonlinearities in order to recover physical interpretabil-
ity and to reduce the number of parameters.

References
[1] L. De Lathauwer. Decompositions of a higher-order tensor in block terms – Part I: Lemmas for partitioned

matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1022–1032.

[2] L. De Lathauwer. Decompositions of a higher-order tensor in block terms – Part II: Definitions and unique-
ness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033–1066.

[3] P. Dreesen, M. Ishteva and J. Schoukens. Decoupling Multivariate Polynomials Using First-Order Informa-
tion, 2014; arXiv:1410.4060.

[4] P. Dreesen, M. Schoukens, K. Tiels, and J. Schoukens. Decoupling static nonlinearities in a parallel Wiener-
Hammerstein system: A first-order approach. Technical report, Department ELEC, Vrije Universiteit Brus-
sel, 2014. Available from http://homepages.vub.ac.be/~pdreesen/decpWH.pdf.

[5] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM Rev., 51(3):455–500, September
2009.

YRMS5 Monday, March 23 16:50-17:10 (Masaccio Room) Dreesen
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Soft Thresholding of Hierarchical Tensors and Its Application in
Iterative Methods

Markus Bachmayr, Reinhold Schneider
UPMC Paris 06

TU Berlin

A widespread approach for solving high-dimensional problems using tensor representations is to modify a
convergent standard iterative method by an additional rank reduction in each step. In the context of the
hierarchical tensor format, this reduction is usually achieved by truncation of a higher-order singular value
decomposition. In this talk, we consider an alternative type of rank reduction based on soft thresholding of
tensors.

Whereas hard thresholding produces sparse approximations of a sequences by removing entries of absolute
value below a certain threshold, soft thresholding also modifies all remaining entries. Applying soft thresholding
to a sequence amounts to applying the function sα(x) := sign(x)max{|x| − α, 0} to each entry, and in contrast
to the analogous function applied in hard thresholding, sα is non-expansive, that is, Lipschitz continuous with
constant one. It is well-known that non-expansiveness also holds for the resulting thresholding operation on
sequences (with respect to the `2-norm) and on matrices (where it is applied to the singular values, and one has
non-expansiveness with respect to the Frobenius norm).

In this talk, we describe a soft thresholding operation for hierarchical tensor representations that also pre-
serves this property and which can serve as a substitute of truncated higher-order singular value decompositions
(which would correspond to hard thresholding) for rank reduction in iterative methods. We give an analysis
of the approximation properties of the thresholding for different types of hierarchical singular value decay and
consider in detail its combination with convergent fixed point iterations, where non-expansiveness turns out to
be surprisingly useful. We then focus on the treatment of linear elliptic operator equations based on a fixed
discretization. We propose a convergent method with a posteriori choice of an appropriate sequence of thresh-
olding parameters that only requires bounds on the spectrum of the operator. The favorable properties of this
scheme, especially concerning the resulting hierarchical ranks of iterates, are also demonstrated in numerical
tests.

YRMS5 Monday, March 23 17:10-17:30 (Masaccio Room) Bachmayr
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Tensor-structured approximation
for the solution of differential equations

Vladimir Kazeev
Seminar for Applied Mathematics, ETH Zurich

In d dimensions, we consider problems with linear second-order elliptic differential operators of the form

L = −∇>A∇+ b>∇+ c,

where the coefficients A, b and c are sufficiently smooth. A textbook approach based on the low-order finite-
difference or finite-element approximations constructed on a uniform, tensor-product grid of size n × . . . × n
seems infeasible due to the rapid growth of the complexity of both the representation of the discretizations
and the whole solution algorithm, which are at least O(nd). This very approach, however, turns out to be
highly efficient when the vectors and matrices involved in the numerical algorithm are parametrized using
tensor decompositions [1, 2], of which we consider here the tensor train (TT) [3, 4] and quantized tensor train
(QTT) [5, 6] representations of tensors.

If a d-dimensional n× . . .× n-vector u satisfies the equation

uj1,...,jd =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1(j1, α1) · U2(α1, j2, α2) · . . . · Ud−1(αd−2, jd−1, αd−1) · Ud(αd−1, jd)

for 1 ≤ jk ≤ n and 1 ≤ k ≤ d with two- and three-dimensional arrays U1, U2, . . . , Ud, then u is said to
be represented in the TT decomposition in terms of the core tensors U1, U2, . . . , Ud. The summation limits
r1, . . . , rd−1 are called ranks of the TT representation. The quantization of the kth dimension relies on the
positional representation of the “physical” indices in terms of “virtual” indices, e.g., for n = 2l, on the binary
encoding:

jk 7→ jk,1, . . . , jk,l = 1 +

lk∑

µ=1

2l−µ(jk,µ − 1) for 1 ≤ k ≤ d.

The QTT representation is then a combination of the quantization of the “physical” dimensions with the TT
decomposition, in which the latter separates the “virtual” dimensions produced by the former. The number of
parameters TT and QTT representations involve is bounded from above by dnR2

TT and 2dlR2
QTT respectively,

where RTT and RQTT are upper bounds on the TT and QTT ranks. These complexity bounds may be dra-
matically smaller than nd, the formal number of degrees of freedom, provided that the dependence of the rank
bounds RTT and RQTT on n and d is moderate. This is often observed experimentally for the data involved in
the numerical solution of PDEs, see [2, 7, 8, 9, 10] and references therein. The talk will present recent theoretical
results on the rank bounds obtained jointly with Ch. Schwab (SAM ETH Zurich).

References
[1] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin Heidelberg (2012).

[2] L. Grasedyck, D. Kressner and Ch. Tobler. A literature survey of low-rank tensor approximation techniques.
GAMM-Mitt. 36 (2013), 53–78.

[3] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use SVD in many
dimensions. SIAM J. Sci. Comput. 31 (2009), 3744–3759.

[4] I. V. Oseledets. Tensor train decomposition. SIAM J. Sci. Comput. 33 (2011), 2295–2317.

[5] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal.
Appl. 31 (2010), 2130–2145.

[6] B. N. Khoromskij. O(d logN)-quantics approximation of N -d tensors in high-dimensional numerical mod-
eling. Constr. Approx. 34 (2011), 257–280.

YRMS5 Monday, March 23 17:30-17:50 (Masaccio Room) Kazeev

GAMM 2015 8
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sion equations. Technical Reports of SAM ETHZ, No. 13 (2012).

[8] V. A. Kazeev, O. Reichmann and Ch. Schwab. Low-rank tensor structure of linear diffusion operators in
the TT and QTT formats. Linear Algebra Appl. 438 (2013), 4204–4221.

[9] I. Oseledets and S. Dolgov. Solution of linear systems and matrix inversion in the TT format. SIAM J. Sci.
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Riemannian BFGS on the Tensor Train component space using an
inherited tensor metric

Max Pfeffer, Reinhold Schneider
TU Berlin

We apply existing concepts of Riemannian geometry to the Tensor Train (TT) component space, which is a
quotient space of the full component space

C =

d∏

i=1

Rri−1×ni×ri
∗ .

It has been established that the TT component space is a smooth manifold that is related to a product of
Grassmannians [1]. The according tangent space is obtained by posing a gauge condition. We use a non-
canonical Riemannian metric and introduce projections, retractions and vector transport in order to be able to
perform second order optimization [2]. The metric simulates the TT manifold of tensors of fixed TT rank,

Mr = {U ∈ Rn1×···×nd : rankTT(U) = r},

and as such, it allows us to break down minimization problems on this space to the component space. The
Riemannian BFGS is defined and performed in local coordinates, which ensures the optimality of the BFGS
update. The possibility of a limited memory method is explored [3].

References
[1] A. Uschmajew, B. Vandereycken. The geometry of algorithms using hierarchical tensors. Linear Algebra

Appl. 439 (2013), 133–166.

[2] P.-A. Absil, R. Mahony, R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University
Press. Princeton, NJ (2008).

[3] B. Savas, L.-H. Lim. Quasi-Newton methods on Grassmannians and multilinear approximations of tensors.
SIAM J. Sci. Comput. 32 (2010), 3352–3393.
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Preconditioned Riemannian optimization for low-rank tensor
equations

Daniel Kressner1, Michael Steinlechner1, Bart Vandereycken2

1EPF Lausanne, Switzerland
2Université de Genève, Switzerland

The solution of very large linear systems is a challenging task often encountered as a core ingredient when
solving partial differential equations on high-dimensional domains. In these cases, the degrees of freedom in
the linear system grow exponentially with the number of dimensions, making classic approaches unfeasible.
Approximation of the solution by low-rank tensor formats often allows us to avoid this curse of dimensionality
by exploiting the underlying structure of the linear operator. We propose a new algorithm that performs a
preconditioned gradient method on the manifold of tensors of fixed rank. In particular, we focus on tensors
represented in the Tensor Train (TT) / Matrix Product States (MPS) format. We demonstrate the flexibility
of our algorithm by comparing different approximations of the Riemannian Hessian as preconditioners for the
gradient directions. Finally, we compare the efficiency of our algorithm with other tensor-based approaches such
as the Alternating Linear Scheme (ALS).

YRMS5 Monday, March 23 18:10-18:30 (Masaccio Room) Vandereycken
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