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J. J. Moreau’s mathematical toolkit for Nonsmooth
Mechanics

Manuel D. P. Monteiro Marques

CMAF-CIO, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa,

Campo Grande, 1749-016 Lisboa, Portugal; mdmarques@fc.ul.pt

Summary: Several mathematical tools developed by Jean Jacques Moreau
will be reviewed and an example of its use in nonsmooth dynamics will be
provided.

On J. J. Moreau’s Mathematics for Mechanics

The place of Jean Jacques Moreau as a towering figure in the fields of Mathematics and
Mechanics is firmly established. The special issue of Comptes Rendus Mécanique is a
much deserved recent celebration of his work in Mechanics. It also contains a publica-
tion list, as complete as possible ([1] p. 157-163), as well as a very nice preface by the
editors, on the ”legacy of a deep thinker”.

The scope of this talk is more restricted: to present very briefly some of the mathe-
matical tools which Jean Jacques Moreau created or developed in order to study the
mechanical problems that were his main interest. The focus will be in a few topics that
many, if not all the researchers in solid mechanics should now be acquainted with, namely

- Convex Analysis [2 a,b]
- Evolution problems, such as the sweeping process [3]
- Functions of bounded variation [4].

Ideally, these mathematical tools would be mentioned in context, that is, with some dis-
cussion of their usefulness in the re-formulation and the study of mechanical problems.
In any case, for that purpose, the audience is invited to:
1) read from the source, say, from [5] [6]; or
2) to read from the special issue [1]; or simply
3) to follow this meeting, while paying attention to J. J. Moreau’s pervasive influence
in the fields of Mathematics and Mechanics.

A reference could also be made to

- Numerical aspects [7] [8] [9],

in which J. J. Moreau also excelled (not to mention many other works on e.g. fluid
mechanics and granular materials), but these are essentially outside my reach.

An application to dynamics

An outline of a discretization method for a model problem of the dynamics of a particle
or a simple system (e.g. [10]) is presented to give a specific example of the application
of J. J. Moreau’s ideas.
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FRICTION AND WEAR ACROSS SCALES 
J.F. Molinari 

Department of Civil Engineering, Department of Materials Science  
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 

e-mail: jean-francois.molinari@epfl.ch 
 
Around mid-twentieth century tremendous progress was made in Tribology, the science of interacting 
surfaces in relative motion. Scientific advances explained the intimate relationship between surface 
roughness, load, and the real contact area. Due to the complexity of wear mechanisms, scientific progress has 
arguably slowed down ever since, although there has been a rapid increase in the number of empirical 
models describing friction and various forms of wear. Recently, with the advent of nanotribology, 
fundamental discoveries were made regarding friction mechanisms at nanoscale asperities. However, by and 
large, the dots remain unconnected and our macroscopic engineering-scale understanding of tribological 
mechanisms remains limited. We present our recent attempts at developing a fundamental, mechanistic, 
across scales, understanding of friction and adhesive wear.  
 
I will begin by summarizing numerical simulation results, based on coarse-grained atomistic potentials [1,2], 
that capture debris formation at a contact junction. The two mechanisms at play in our simple numerical 
model are plastic shearing of contacting asperities, and (if enough elastic energy is available) crack 
propagation and coalescence leading to debris creation. This ductile to brittle transition was shown to occur 
at a material-dependent critical contact-junction size [2]. We also show that, in the simple situation of an 
isolated micro contact, the final debris size scales with the maximum junction size attained upon shear, and 
with the total shear-load mechanical work. This permits to draw analogies with Archard adhesive wear model 
[3]. I will also discuss recent results regarding the long term evolution of surface roughness, and will attempt 
to draw analogies with field observations of fault roughness and gouge. 
 
 
References 
[1] Aghababaei, R., Warner, D.H., Molinari, J.F., “On the debris-level origins of adhesive wear”, PNAS, 114(30), pp. 

7935-7940 , 2017.   
[2] Aghababaei, R., Warner, D.H., Molinari, J.F., “Critical length scale controls adhesive wear mechanisms”, Nature 

Communications, 11816, 2016. 
[3] Archard, J.F., “Contact and rubbing of flat surfaces”, Journal of Applied Physics, 24, 981, 1953. 
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On the coupling between dry friction and linear elasticity

Patrick Ballard
Institut ˆ’Alembert, Sorbonne Université, Paris

The steady sliding frictional contact problem is studied in the framework of linear elasticity
and the Coulomb law of dry friction.

First, the model problem of the frictional equilibrium of a point particle in an quadratic
elastic potential and in contact with a moving straight obstacle, as represented on figure 1, is
studied. For low friction coe�cient F , it is proved that there is a unique equilibrium, and that
this equilibrium is stable (at least with respect to tangential dynamics). When the friction
coe�cient F is increasing, three destabilisation scenarii come into competition: a pitchfork
bifurcation, a supercritical Hopf bifurcation and a subcritical Hopf bifurcation. According to the
(three-dimensional) sti�ness matrix, any of them can be first one which is encountered.

w

f

Figure 1: The steady sliding frictional contact problem for a point particle.

Then, the continuum problem is considered, as represented on figure 2. The obstacle is
moving in such a way that its overall geometry remain invariant with respect to time. For

�c

fp

tp

w

�c

fp

tp

Figure 2: The steady sliding frictional contact problem for a continuum.

three-dimensional problems, some examples are that of plane translating alongside to itself, that
of a surface of revolution rotating around its own axis, or that of an infinite screw rotating
around its own axis. The problem is that of finding an equilibrium displacement field, that is,

1
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which remains invariant with respect to time. It is claimed that this problem is the generic
abstract problem raised by any machine having moving parts in frictional contact and which is
expected to run smoothly, that is, steadily. In the case of an homogeneous friction coe�cient F ,
the main result which is proved is that there exists a critical friction coe�cient 0 < Fc Æ +Œ,
such that, for all 0 Æ F < Fc, the steady sliding frictional contact problems admits one and only
one equilibrium solution. An example is provided of a steady sliding frictional contact problem
admitting infinitely many solutions, so that Fc is finite. An example is also provided in which Fc

is infinite. Hence, taking the friction coe�cient F as a control parameter in the steady sliding
frictional contact problem, it is observed that the steady sliding frictional contact problem may
display a bifurcation, or not.

Finally, the case where the elastic body is a two-dimensional half-space (plane strain) is more
particularly studied. It is proved that the corresponding steady sliding frictional contact problem
has one and only one solution for any friction coe�cient F (Fc = +Œ). The solution displays
a variety of universal singularities that are explicitly exhibited. One striking example is the
singularity of the reaction force induced by a a jump in the friction coe�cient, as represented

≠1 1

w

x

F≠ < F+

≠1 1

w

x

F≠ > F+

≠1 1

P

w
x

≠1 1

P

w
x

Figure 3: Normal component of the surface traction when the larger friction coe�cient is front
(left) or rear (right).

on figure 3. In the case where the largest friction coe�cient is front, the reaction force goes to
infinity at the jump (meaning that the deformable body is strongly pressed against the obstacle).
On the opposite, in the case where the largest friction coe�cient is rear, the reaction force goes
to zero at the jump (meaning that the deformable body is locally unloaded at the jump).

References
[1] Patrick Ballard (2016), Can the ‘stick-slip’ phenomenon be explained by a bifurcation in

the steady sliding frictional contact problem? Discrete and Continuous Dynamical Systems
Series S 9, pp. 363–381.

[2] Patrick Ballard (2016), Steady sliding frictional contact problem for a 2d elastic half-space with
a discontinuous friction coe�cient and related stress singularities. Journal of the Mechanics
and Physics of Solids 97, pp. 225–259.

[3] Patrick Ballard (2013) Steady sliding frictional contact problems in linear elasticity. Journal
of Elasticity 110, pp. 33–61.
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Toward solving contact problems with trillion variables

T. Brzobohatý1, Z. Dostál1,2, T. Kozubek1, and D. Horák1,2

VŠB–Technical University of Ostrava, 1-National Supercomputing Center IT4I, 2-FEECS,

Department of Applied Mathematics.

Summary: We shall present our results in the development of massively
parallel algorithms with optimal (linear) complexity which have potential
to solve extremely large contact problems. After giving an overview of the
basic algorithms, theoretical results, and improvements, we shall present
numerical experiments demonstrating the scope of their applicability.

We start with a short overview of scalable algorithms for the solution of contact problems
and assessment of their capability to solve effectively extremely large problems. Then we
shall report both our earlier and recent results. The scalability results cover 2D and 3D
problems discretized by the finite element and/or boundary element [8] method, possibly
with “floating” bodies, including the multibody frictionless problems, both static [5] and
dynamic [2], and the problems with a given (Tresca) friction [3], including anisotropic
friction. The algorithms are based the TFETI/TBETI (total finite/boundary element
tearing and interconnecting) based domain decomposition methodology introduced by
C. Farhat and F.-X. Roux [6] adapted to the solution of contact problems of elasticity.
Recall that TFETI [1] differs from the classical FETI by imposing the prescribed dis-
placements by means of Lagrange multipliers and treating all subdomains as “floating”.
A comprehensive description of all algorithms and results can be found in [4]

A special attention is paid to the implementation details, especially to those related
to the massively parallel implementation. We give some hints concerning the effective
parallel implementation of FETI-type algorithms for the solution of very large problems,
including the implementation of the action of a generalized inverse of the stiffness matrix
and projector avoiding implementation. We briefly discuss the possibility to increase the
scope of parallel scalability by introducing the third level grid by a variant of HTFETI
(Hybrid TFETI). The third level is introduced by the decomposition of TFETI subdo-
mains into smaller subdomains that are partly glued in corners or by averages at the
primal level (see, e.g., Klawonn and Rheinbach [7]). Let us mention that the condition-
ing of the dual matrix generated by small clusters glued by averages is qualitatively the
same as that arising from standard TFETI [9]. We also briefly mention the packages
that were used for the solution of the benchmark, namely PERMON based on PETSc
(permon.it4i.cz) and ESPRESO based on Intel MKL and Cilk (espreso.it4i.cz).

We illustrate the performance of the rigid punch problem described in [4, Chap. 19].
Each subdomain was assigned to a single core. The stopping criterion was defined by
the relative precision of the projected gradient and the feasibility error equal to 10−4

(measured in the Euclidean norm and compared with the Euclidean norm of the dual
linear term. The results of computations are in Table 1.
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NS n [106] outer iters Hessian mult. iter. time [sec]
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Table 1: Results of the benchmark – cube contact linear elasticity problem.
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Multiscale frictional e↵ects in rough soft contacts

Jakub Lengiewicz

Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.

Summary: Non-trivial macroscopic frictional response in rough contacts
can be observed even for purely elastic bodies with local Amonton-Coulomb
friction law. The e↵ect have been analyzed by the series of FEM-based
numerical experiments.

Introduction

In tribology, the question of how to describe the sliding of rough contacts is still viewed
as one of frontiers for modeling [1]. This is due to a number of possible mechanisms
and sources of dissipation at di↵erent length- and time scales, which contribute to the
observed macroscopic frictional response. Quite conveniently, despite their limitations,
multiscale approaches are commonly applied to understanding and e↵ectively modeling
the friction.

Of our particular interest is the specific class of contact systems in which one or both
surfaces are compliant. These can be, for instance, rubber-like materials like elastomeric
seals or biological contacts like the skin. For such systems, the viscoelastic hysteresis
induced by non-homogeneous contact loading due to roughness is usually viewed as a
dominant e↵ect that modifies the macroscopic frictional response versus the microscopic
one [2, 3]. However, even when only considering purely elastic contacts and the sim-
ple Amonton-Coulomb friction model at the micro scale, one can observe non-trivial
frictional e↵ects at the macro scale [4–6]. The latter case is more deeply analyzed and
discussed in this work.

Macroscopic friction of soft rough elastic contacts

Two types of rough elastic contact systems have been considered. First systems (Case 1)
are based on randomly rough periodic surfaces [4], see Figure 1a, in which the asperities’
heights/slopes are relatively low. Second systems (Case 2) are based on anatomical
model of the skin section, which is characterized by a complicated surface topography
at the microscopic scale and additionally by a layered structure [5, 6], see Figure 1b.
In the case of skin, a simplified counter-surface has been considered, represented by the
isolated rigid cylinders (not shown in the Figure).

Both cases have been analyzed using FEM-based contact homogenization procedure
(di↵erent for each case). The main observation is that the macroscopic friction coe�cient
can di↵er from the microscopic one, and moreover can significantly depend on normal
contact pressure. The further study has been performed in both cases to analyze how the
friction-pressure relationship depends on various problem parameters. In the Case 1,
for Poisson ratio ⌫  0, a counter-intuitive e↵ect has been observed, in which the
macroscopic friction coe�cient drops below the microscopic one, see Figure 2a. In the
Case 2, the global-to-local friction coe�cient ratio is higher than in the Case 1, and it
possibly depends on the asperity radius on the counter-surface, see Figure 2b.
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(a) (b)

Figure 1: Two rough contact systems: (a) randomly rough periodic surfaces, (b) 2D
anatomical model of the skin.

(a) (b)

Figure 2: Macroscopic friction-pressure relationship: (a) in Case 1, for di↵erent values
of Poisson ratio ⌫, (b) in Case 2, for di↵erent cylinder radii R and di↵erent local friction
coe�cient µl.

References

[1] R.W. Carpick, The contact sport of rough surfaces, Science, 359:38-38, 2018.

[2] P. Wagner, P. Wriggers, C. Klapproth, C. Prange, B. Wies, Multiscale FEM ap-
proach for hysteresis friction of rubber on rough surfaces, Computer Methods in
Applied Mechanics and Engineering, 296:150-168, 2015.

[3] K.I. Kilic, I. Temizer, Tuning macroscopic sliding friction at soft contact interfaces:
interaction of bulk and surface heterogeneities. Tribol. Intern., 104:8397, 2016.

[4] S. Stupkiewicz, M. Lewandowski and J. Lengiewicz, Micromechanical analysis of
friction anisotropy in rough elastic contacts, Int. J. Solids Struct., 51:3931-3943,
2014.

[5] M.F. Leyva-Mendivil, J. Lengiewicz, A. Page, N.W. Bresslo↵ and G. Limbert, Skin
microstructure is a key contributor to its friction behaviour, Tribol. Lett. 65, 2017.

[6] M.F. Leyva-Mendivil, J. Lengiewicz and G. Limbert, Skin friction under pressure.
The role of micromechanics, Surf. Topogr.: Metrol. Prop. (in review).

11



Explicit integrators for the impact of elastic solids: a
comparison of a Nitsche-based approach with existing ones
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Summary: the aim of the presentation is to revisit the analysis of explicit
integration of the dynamic with impact of deformable solids by existing
strategies (explicit schemes for penalized contact, Moreau’s NSCD schemes,
Paoli-Schatzman scheme, mass redistribution method, etc.), by comparing
them to a Nitsche-based approximation of the contact condition described
in [1–3] for the static case and implicit schemes. Comparisons will be
provided in term of energy conservation, convergence and occurrence of
spurious oscillations.

Introduction

Due to the di�culty to obtain reliable simulations, the explicit integration of the dynamic

with impact of deformable solids has already been the subject of an important literature.

To mention some of the main approaches, we can say that precursory and widely resumed

work in this area is due to J.J. Moreau [4] in the context of the impact of rigid body

systems. The schemes proposed by J.J. Moreau have been extended quite naturally

to the elasticity case via finite element semi-discretization (for instance in [5]) which

transforms the continuous impact problem into a discrete one very close to a rigid body

system. These discrete impact problems, governed by a so-called measure di↵erential

inclusion are notoriously ill-posed and of very low regularity.

The ill-posedness can be (for the most part) fixed by the addition of an impact law with a

restitution coe�cient. A valuable scheme in this context is that of Paoli and Schatzman

[6] who implicitly takes into account this restitution coe�cient. However, the addition

of a restitution coe�cient is somewhat artificial in the context of deformable solids.

As it is noticed in [7], one of the important di�culties introduced by the semi-discretization

by finite elements is that it transforms a well-posed continuous problem (it is well posed

at least in the 1D case, see [9]) into an ill-posed measure di↵erential inclusion having an

infinite number of solutions, depending on the choice of a restitution coe�cient on each

node of the contact boundary. Moreover, it is not possible to decide which solution is

more suitable than other. Indeed, the two most remarkable solutions are, first, the one

for a unitary restitution coe�cient which is energy conserving but which causes very

important spurious oscillations of the contact nodes and unexploitable contact stress,

and also the solution for a vanishing restitution coe�cient which ensures stability and a

better approximation of the contact stress but is energy dissipative, while the continuous

problem is not. This resulted in [7] to propose the mass redistribution method (gener-

alized in [8]) which allows an interesting compromise in this context, i.e. a conservation

of energy and a good quality of the contact stress. However, it introduces an implicit

computation on the contact nodes even when an explicit time-marching scheme is used.
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Nitsche-based method

The aim of this presentation is to compare the approximation by explicit schemes of

the Nitsche method developed in [1–3] with existing methods above and with the ap-

proximation by penalized contact. The principle of the Nitsche method is the use of the

following well known relation which is equivalent to the contact condition

�n = �(�un � �n)+, � > 0

by plugging it into the weak formulation, which makes the Nitsche-based method a

consistent and primal one.

The comparison will be mainly performed on the one-dimensional problem introduced

in [9] whose advantage is to present a known periodic solution and to make clear the

occurrence of parasitic oscillations, the convergence and energy conservation properties.

Comparisons in dimension 2 and 3 will also be presented (see the example on Fig. 1).

(a)

Figure 1: Example of the impact of a sphere on a rigid ground, approximated with a

Nitsche-based method.
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Formulations and extensive comparisons of 3D frictional

contact solvers based on performance profiles

Vincent Acary1, Maurice Brémond and Olivier Huber

[1] INRIA & LJK. Université Grenoble Alpes. France

[2] University of Wisconsin. Madison. USA

This work reviews, details and compares several numerical algorithms to
solve 3D frictional contact problems. The comparisons are made on a
benchmark of over 2500 instances, and performance profiles unveil the
trends.

(a) Cubes H8 (b) LowWall FEM (c) Aqueduct PR (d) Chute 4000

Figure 1: Illustrations of the FClib test problems

Introduction

Let nc 2 IN be the number of contact points and n 2 IN the number of degree of freedom.
Given a symmetric positive (semi-)definite matrix M 2 IRn⇥n, a vector f 2 IRn, a matrix
H 2 IRn⇥m with m = 3nc, a vector w 2 IRm and a vector of coe�cients of friction
µ 2 IRnc , the discrete frictional contact problem is to find three vectors v 2 IRn, u 2 IRm

and r 2 IRm such that

Mv = Hr + f, u = H>v + w, û = u+ g(u), K? 3 û ? r 2 K, (1)

where g(u) is a nonsmooth function and K ⇢ IR3nc is a Cartesian product of second
order cone in IR3. For each contact ↵, the unknown variables u↵ 2 IR3 (velocity or
gap at the contact point) and r↵ 2 IR3 (reaction or impulse) are decomposed in a
contact local frame (O↵,N↵,T↵) such that u↵ = u↵NN

↵ + u↵TT
↵, u↵N 2 IR, u↵T 2 IR2 and

r↵ = r↵NN
↵ + r↵TT

↵, r↵N 2 IR, r↵T 2 IR2. The set K is the cartesian product of Coulomb’s
friction cone at each contact, that is

K =
Y

↵=1...nc

K↵ =
Y

↵=1...nc

{r↵, kr↵Tk  µ↵|r↵N|}. (2)

The function g is defined as g(u) = [[µ↵ku↵TkN↵]>,↵ = 1 . . . nc]>. For more details, we
refer to [1]. In this work, we discuss and compare the numerical solution procedures
for solving the discrete frictional contact problem.

Second Order Cone Complementarity Problem (SOCCP)

From the mathematical programming point of view, the problem (1) is a SOCCP. If
the nonlinear part of the problem is neglected (g(u) = 0), the problem is an associated
friction problem with dilatation, and by the way, is a gentle SOCLCP with a positive
matrix H>M�1H (possibly semi–definite). When the non-associated character of the
friction is taken into account through g(u), the problem is non-monotone and nonsmooth,
and then very hard to solve e�ciently. This generic problem is at the heart of most of the
simulation techniques of mechanical systems with 3D Coulomb’s friction and unilateral
constraints. as discussed in [2], it might be the result of
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• a time–discretization scheme by event–capturing time–stepping methods or event–
detecting (event–driven) techniques of dynamical systems

• a space–discretization (by FEM for instance) of the quasi-static problems of fric-
tional contact mechanics.

Formulations based on numerical optimization

In this talk we will recall a result for the SOCCP (1) which ensures that a solution
exists [3]. Then, we present several classes of algorithms that have been previously
developed for solving this problem:

• Variational inequalities solvers: fixed point with projection and extragradient tech-
niques with self-adapting step rule.

• Nonsmooth equations solvers: semi–smooth and generalized Newton methods with
line-searches

• Block–splitting (Gauss-Seidel Like) and projected overrelaxation (PSOR).

• Proximal point algorithms

• Optimization based solvers: Panagatiopolous approach, Czech school approach
(Tresca successive approximations) and convex SOCQP relaxation.

Extensive comparisons

The goal of this work is to compare, on a large set of problems, the methods found
in the literature and to propose some new approaches. To this end, we build an open
collection of discrete frictional contact problems called FCLIB1 in order to o↵er a large
library of problems to compare algorithms on a fair basis. In this work, this collection
is solved with the software Siconos and its component Siconos/Numerics2.

Conclusions

On one hand, we will show that algorithms based on Newton methods for nonsmooth
equations solve quickly the problem when they succeed, but su↵er from robustness issues
mainly when the matrix H has not full rank. On the other hand, the iterative methods
dedicated to solving variational inequalities are quite robust but with an extremely slow
rate of convergence. To sum up, as far as we know there is no option that combines time
e�ciency and robustness. This presentation will be a summary of the work detailed in
a recent technical report [4]
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A local multi-physical approach to model braking
materials
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Summary: Local investigations are managed to understand the multi-
physical complexity of braking materials. After a determination of the
Representative Elementary Volume, measures of friction, damage and tem-
perature are related to global solicitations and the deceleration. The impact
of wear on the di↵erent equilibrium is also presented.

Introduction

The relative motion of two bodies in contact is the seat of several dissipative phenomena.
In particular, part of the mechanical energy necessary to rub bodies against each other
is converted into thermal energy (from 80 to 95% according to the literature [1]). Under
dry contact conditions, this conversion can lead to hot spot localization, thermoelastic
instabilities, etc [2]. The literature proposes a large variety of analytical models trying
to represent the contact complexity [3] but it appears that there are only few models
accounting for the dynamic evolution of the contact, leading to the creation of an in-
terfacial layer composed for the most part of the transformation and the degradation of
debris particles issued from the bodies in contact. This layer, usually called the third
body in reference of the two bodies in contact [4], is well known to its mechanical roles
(velocity accommodation, load transmission,...) but less for its thermal ones.

With the development of discrete element methods (DEM) [5] and their extensions to
thermo-mechanical behavior of contact interface, it is possible to analyze numerically the
life of a contact. Several results have been observed [6] as, for example, the localization
of the maximal temperature within the thickness of the third body as a function of its
internal cohesion. Nevertheless, the approach stays at the scale of the third body, and
the influence of first bodies is related to some specific thermal boundary conditions.

Based on recent works [7], a new reflection on the wear process including mechanical and
thermal e↵ects, is proposed. Using an extended discrete element approach, a discussion
is proposed around the evolution of friction, temperature and wear in terms of energy
balance.

Numerical Framework

The method used to simulate evolution of a discrete equivalent continuous media is the
Non-Smooth Contact Dynamics (NSCD) approach, developed by Moreau and Jean [5].
Recently, the approach has been extended and used as a mesh-less approach to model
equivalent continuous media under tribological solicitations where cohesive zone models
(CZMs) [8] have been used to confer with the whole packing a continuous behavior (cf.
Figure 1) equivalent from a mechanical and a thermal point of view [7, 9].
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Figure 1: Evolution of the damage in a discrete structure

Results

Among the di↵erent results, impact of debris properties will be presented and how the
internal cohesion of the tribological layer can be related to damage processes. More-
over, the introduction of wear flows are also discussed. They underline the fact that a
controlled wear flow could be benefit for the evolution of the global damage of the REV.

References

[1] F.E. Kennedy, Single pass rub phenomena-analysis and experiment, J. Lubr. Tech-
nol, 104:582–588, 1982.

[2] J.R. Barber, Thermoelastic instabilities in the sliding of com- forming solids, Proc.
R. Soc. Lond. A Math, 312:381–394, 1969.

[3] F.E. Kennedy, Surface temperature in sliding systems - a finite element analysis, ,
J. Lubr. Technol., 103:90–96, 1981.

[4] M. Godet, The third-body approach: a mechanical view of wear, Wear, 100:437–452,
1984.

[5] M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech.
Eng., 177:235–257, 1999.

[6] D. Richard, I. Iordano↵, M. Renouf, Y. Berthier, Thermal study of the dry sliding
contact with third-body presence, ASME. J. Tribol., 130:031404, 2008.

[7] M. Champagne, M. Renouf, Y. Berthier, Modeling wear for heterogeneous bi-phasic
materials using discrete elements approach, ASME J. Tribol., 136(2):021603, 2014.
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Heterogeneous Asynchronous time integrators for non-smooth 
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dynamics  

Abstract 
For non-smooth transient structural dynamics, the choice of the time step and the time 
integrator has a critical impact on the feasibility of the simulation. For instance, during an 
earthquake, a bridge crane, usually located overhead in buildings, may be subjected to multiple 
impacts between crane wheels and rail. These multiple impacts cause significant damage in the 
structure. Then the qualification of these structures with respect to normative seismic design 
requirements, which are continuously developing and becoming more and more stringent, 
requires strengthened simulation techniques especially to model the impact phenomenon. 
Furthermore, multiple time-scales coexist in a bridge crane under seismic loading. In that 
case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit 
heterogeneous asynchronous time integrator (HATI) for non-smooth transient dynamics with 
possible contacts and impacts. In a first step we introduce a Moreau-based event-capturing 
explicit time integrator for contact/impact problems. In a second step, a two time scales 
explicit-implicit HATI is developed: it consists in using an explicit time integrator with a fine 
time scale in the contact area, while an implicit time integrator is adopted in the other parts in 
order to capture the low frequency content of the solution and to optimize the CPU time. 3D 
Transient dynamics applications illustrate the robustness and the efficiency of the proposed 
approach. 
 

References 
[1] Fekak F., Brun M., Gravouil A., Depale B., a new heterogeneous asynchronous 

explicit-implicit time integrator for nonsmooth dynamics, Computational Mechanics, 
50:199-225, 2017 

[2] Gravouil A., Combescure A., Brun M., Heterogeneous asynchronous time integrators 
for computational structural dynamics. International Journal for Numerical Methods in 
Engineering, 102:202–232, 2015 

[3] Acary, V., Energy conservation and dissipation properties of time-integration methods 
for non smooth elastodynamics with contact. ZAMM-Journal of Applied Mathematics 
and Mechanics/ 96, 585–603, 2016   

[4] Deuflhard, P., Krause, R., Ertel, S., A contact-stabilized newmark method for 
dynamical contact problems. International Journal for Numerical Methods in 
Engineering 73(9), 1274–1290, 2008   

[5] Hesch, C., Betsch, P., Transient 3d contact problems-nts method: mixed methods and 
conserving integration. Computational Mechanics 48(4), 437–449, 2011  

[6] Lew, A., Marsden, J., Ortiz, M., West, M., Variational time integrators. International 
 Journal for Numerical Methods in Engineering 60(1), 153–212, 2004  

[7] Moreau, J.J., Numerical aspects of the sweeping process. Computer Methods in 
Applied Mechanics and Engineering 177(3), 329–349, 1999   

[8] Jean, M., The non-smooth contact dynamics method. Computer methods in applied 
mechanics and engineering 177(3), 235–257, 1999  

21



[9] Laursen, T.A., Computational Contact and Impact Mechanics: Fundamentals of 
Modeling  Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer 
Science & Business  Media, 2002 

[10] De Saxcé, G., Feng, Z.Q., The bipotential method: a constructive approach to design 
the complete contact law with friction and improved numerical algorithms. 
Mathematical and Computer Modeling 28(4), 225–245, 1998 

[11] Armero, F., Petocz, E., Formulation and analysis of conserving algorithms for 
frictionless  dynamic contact/impact problems. Computer methods in applied 
mechanics and engineering 158(3), 269–300, 1998 

[12] Alart, P.,Curnier,A., A mixed formulation for frictional contact problems prone to 
Newton like solution methods. Computer Methods in Applied Mechanics and 
Engineering 92(3),  353–375, 1991 

[13] Belytschko, T., Neal, M., Contact-impact by the pinball algorithm with penalty and 
Lagrangian methods. International Journal for Numerical Methods in Engineering 31, 
547–  572, 1991 

 

22



 
______________________ 

 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SESSION 2 

23



 
______________________ 

 
 

 

 

 
 

  

24



Derivation of a model of soft imperfect interface with non
local damage and unilateral contact conditions

Asghar Ali Maitlo and Frédéric Lebon

Aix-Marseille Univ. CNRS Centrale Marseille LMA, Marseille France

Summary: In this presentation, a model describing a layered structure com-
posed by two elastic adherents and a thin adhesive subject to a degradation
process and two di↵erent regimes, one in traction and one in compression,
is introduced. By a matched asymptotic expansion method, a model of
imperfect interface taken into account unilateral conditions and non local
damage is derived.

Introduction

The problem of obtaining e�cient models for imperfect interfaces is a subject of great
interest in engineering [1–3]. Clearly, there are many applications of this kind of prob-
lems, in particular related to the development of composite structures. Moreover, it is
known that interface zones between materials (see fig. 1) are fundamental to ensure
strength and stability of structural elements.
In this presentation, the derivation of a model of imperfect interface, coupling damage
and unilateral conditions, as the formal asymptotic limit [4] of a model of a compos-
ite body made by two adherents with an adhesive substance located between them, is
performed.

Figure 1: Examples of bonded structures.

The mechanical problem

A composite body made of three di↵erent materials, two materials are known as ad-
herents and the third one as the adhesive, is considered. Adhesive whose thickness is
" is very thin as compared to the adherents. The body occupying the total bounded
smooth domain is denoted by ⌦" 2 R

3. We introduce an orthogonal frame of reference
(O, e1, e2, e3). Let (x1, x2, x3) denotes the particle in three dimensional frame. The cen-
ter of the inter-phase mid-plane is the origin of the frame of reference and the x3-axis
runs perpendicular to the open bounded set S where S = {(x1, x2, x3) 2 ⌦"

x3 = 0}.
The adherents are supposed to be elastic. It is considered that the adhesive is a gener-
alized Kachanov-type soft material with the elastic coe�cients depends upon a damage
parameter � [5]. Moreover to avoid interpenetration between the adherents [6], and
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using standard notations, two regimes, one in traction, one in compression, are defined
as follows

(
�
" = "�̃(�)(tr(e(u")))I2 + 2"µ(�)(e(u")) if e(u") � 0

�
" = �(�)(tr(e(u")))I2 + 2"µ(�)(e(u")) if e(u")  0

(1)

where I2 is the second order identity tensor and �, µ the Lamé coe�cients. The non
local damage evolution is given by

(
⌘
"
�̇ = !

" + ↵��� "�,�(tr(e(u")))2I2 � 2"µ,�(e(u"))2 if e(u") � 0
⌘
"
�̇ = !

" + ↵��� �,�(tr(e(u")))2I2 � 2"µ,�(e(u"))2 if e(u")  0
(2)

In the lecture, it will be shown that using an asymptotic theory [7, 8], it is possible to
obtain the following limit problem on S

8
>>>>>>>><

>>>>>>>>:

[�i3] = 0
�↵3 = µ(�) [u↵] , ↵ = 1, 2
�33 = (�̃(�) + 2µ(�))[u3]+ + ⌧

[u3] � 0, ⌧  0 [u3] ⌧ = 0
� 2 [0, 1]

⌘̄�̇ =
⇣
!̄ + ↵̄�2��

⇣
µ(�) [u1]

2 + µ(�) [u2]
2 + (�̃(�) + 2µ(�)) [u3]

2
+

⌘⌘

�

(3)

where ()+ (resp. ()�) denotes the positive (resp. negative) part of a function and ¯
denotes the term of order �1 in the expansions of the considered parameters. �2 is the
laplacian restricted to the plane. This model of imperfect interface takes into account
damage evolution and unilateral conditions.
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Numerical study of the mixed-mode delamination of
composite interfaces
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In this work we propose a new numerical formulation to compute the de-
lamination onset and propagation along weak interfaces under mixed-mode
conditions. The interfacial problem is addressed through a cohesive crack
model, concentrating all the non-linearities at the interface. The accuracy
of the proposed formulation is verified against predictions of a combined
contact-delamination algorithm.

Introduction

Nowadays, many engineering components are made of high performance laminated com-
posites and adhesively bonded interfaces. One of the most important damage modes of
laminated structures is related to the non-linear and irreversible delamination process,
including the formation and propagation of inter-laminar cracks, up to the complete de-
tachment of the adherends. The delamination process falls within a fracture mechanics
framework, for which several test configurations under transverse forces have been devel-
oped and standardized to measure the delamination strength and/or toughness. Among
such test we would like to cite the symmetric and asymmetric Double Cantilever Beam
(DCB), the End-Notched Flexure (ENF), the Crack Lap Shear (CLS), the Mixed-Mode
Bending (MMB).

In this context, we address the interfacial delamination problem through an innovative
cohesive formulation, named as Enhanced Beam Theory (EBT). Here the specimen is
considered as an assemblage of two sublaminates, partly bonded together by an elastic
interface. Such interface is represented by a continuous distribution of elastic springs
acting along the normal and/or tangential direction, depending on the interfacial mixed-
mode condition. This generalizes the idea suggested recently in [1] for a single mode-I
delamination, and extended in [2] to include mixed loading, geometrical and mechanical
conditions.

Numerical solutions

A parametric analysis of the problem is perfomed, both locally and globally, in terms of
interfacial stresses, internal forces and displacements, as well as in terms of compliance,
energy release rate, mode mixity angle, and global load-displacement response. The
proposed EBT is compared to some mechanical models available in the literature based
on a Simple Beam Theory (SBT), or a Local Method (LM). A further validation of the
proposed approach is based on a comparative assessment of our results with respect to
predictions based on a frictional contact formulation. The contact algorithm is general-
ized to handle cohesive forces along the normal and tangential directions, as employed
in [3], (see the global response of a Moment Loaded DCB in mode-I loading condition
in Figure 1).
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3 Isogeometric large deformation frictionless contact using Nurbs and T-splines
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Figure 3.2.2: Find the closest mortar control point and correct facet.

Detection of active contact pairings

As previously said, the active contact surface follows the Kuhn-Tucker conditions, see eq.
(3.2.4). Contact only takes place if a pressure is transmitted. This means that

gN > 0 � separation � tN = 0 � Inactive GAUSS point within a mortar facet
gN � 0 � perfect contact � tN < 0 � Active GAUSS point within a mortar facet

(3.2.21)
The associated algorithm is summarized as follows

LOOP over all slave facets Fs : i = 1, ..., Fs

LOOP over all potential GAUSS points parings Ng : GP = 1, ..., Ng

IF gN � 0 �pairing GP is active �compute the contact contribution of R and
KT

ELSE pairing GP is not active �the contact contribution of R and KT is equal to
zero

END LOOP over all potential GAUSS points parings

END LOOP over all slave facets

Contact stiffness and residual contribution

By substitution of Eq. (3.2.13) into Eq. (3.2.11), the contact contribution to the residual
vector for the Newton-Raphson iterative solution of the non-linear problem is obtained as
follows

R = �N

ˆ
�c

gNN d� (3.2.22)
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Figure 1: Global response of a Moment Loaded DCB in mode-I loading condition.
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Summary: Frictional receding contact problems involving a semi-infinite

linear elastic layer in contact with a half-plane of the same material are

solved by the insertion of distributions of dislocations (or eigenstrains). A

new formulation is presented which takes into account the expected dis-

placements at remote points.

Introduction

Receding contacts are an important class of contacts found in many components, includ-

ing bolted joints, for which the contact area reduces with the application of any finite

normal load. The reduction in many cases is non-continuous, — with the application of

any finite normal load, however small, the contact surfaces snap into a new configura-

tion with a reduced contact area. This was shown to be the case for frictionless elastic

receding contacts by Dundurs and Strippes [1] and the result is valid for frictional elastic

interfaces when the loading is monotonic [2].

Despite receding contacts being present in many mechanical components, such as bolted

joints, their properties are largely unknown and are di�cult to model using finite el-

ements. Modelling receding contacts with distributions of dislocations is a promising

analytical method [3]. However current methods require the inserted distributed dis-

locations to be bounded-bounded. This is not appropriate for many receding contact

situations where the contact surfaces separate even at infinite distances away from the

region of the application of the load, as in the problem studied by Chaise et al. [4],

which is revisited here. The problem geometry studied is given in Figure 1.

x

y
Infinitely long layer

Half-plane

V (x)

v2(x)

v1(x)
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Figure 1: The problem geometry.
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Overview of the method

Preformed dislocation distributions (or eigenstrains) are inserted along the location of

the contact interface which take into account the expected displacements of the con-

tact interfaces at remote points, and then corrective bounded-bounded distributions of

dislocations are superimposed.

Results

The displacements of the layer and the half-plane interfaces as well as the contact trac-

tions are found for di↵erent coe�cients of friction and for di↵erent loading regimes.

Figure 2 shows the relative displacement along the contact interface found from this

model compared with the Chaise model. Results of other problems with di↵erent load-

ing have been obtained as well.
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Figure 2: For f = 0.5, Top: Separation along the contact interface. Bottom: Relative

slip along the interface. Results from the current model are compared with the results

from the Chaise model.
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Summary: The meaningfulness of mode II and mode III fracture energies as 
objective test setup-independent material properties of structural interfaces in 
quasi-brittle materials, like Fiber-Reinforce Polymers (FRPs) and concrete, has 
long been debated, in consideration of the spurious effects that friction may play 
over the total amount of fracture toughness in mixed-mode decohesion processes 
[1,2]. Meso-scale irregularities, characteristic of fracture surfaces in concrete 
(and also observable in FRP fracture process zones), represent a further 
complexity multi-scale factor which hinders the design of experimental standards 
and makes the mechanical analysis theoretically and computationally 
challenging. 
In this contribution the results are presented of a recent campaign of numerical-
experimental Finite Element (FE) multi-scale analyses of mixed-mode FRP 
delamination, tested by a Double Cantilever Beam setup with Uneven Bending 
Moments (DCB-UBM) [3,4]. The FE model employs Multi-plane Cohesive-
Zone Models (M-CZMs) to describe decohesion in the process zone. M-CZMs, 
based on the concept of Representative Multiplane Element (RME) [3], are 
found to be a computationally convenient option, which is intermediate between 
phenomenological macroscale CZMs and full multiscale models, for analysing 
mixed-mode fracture over micro-structured interfaces. By employing a small-
scale elementary cohesive-frictional response formulated within the mechanics 
of generalized continua, M-CZMs formulations capture the increase in measured 
fracture energy, under increasing mode II and mode III components, as a natural 
effect of multiscale coupling between cohesion, friction and interlocking.  
Numerical results bring compelling evidence, relevant to debonding and 
delamination processes in which friction and mesoscale irregularities are 
significant in the process zone, for giving a possible answer to the opening 
question on whether mode II and mode III fracture energies can be treated as real 
material properties or not. 
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Cohesive zone models (CZMs) have been recently used to describe the failure processes and the debonding phenomena 
within materials and interfaces [1,2]. In this work we apply an enhanced CZM, where a displacement-based non-local 
elastic interaction is introduced in the interfacial constitutive law. In this way, the debonding process is described taking 
into account the non-linear elastic local forces and the long-range interactions depending on the relative displacements. 
In order to model the non-local effects, we introduce in the constitutive equation of the interface, the elastic interaction 
forces depending on the relative displacements and distance-decaying functions ruling the amount of the interface 
interactions. In several works from the literature a power-law is adopted as distance-decaying function [3-5]. Such choice 
leads to fractional order operators in the non-local constitutive law. 
In the present study, a structural element composed by two beams partly bonded together by a non-local elastic interface 
is considered. For this case, a numerical solution is achieved by a finite element analysis introducing the proposed non-
local constitutive law of the interface element. 
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Surface roughness is responsible for numerous interfacial contact proper-

ties. The roughness can be characterized through di↵erent parameters:

for example, the Hurst exponent, root mean squared gradient, and rarely

used Nayak parameter. In this contribution we discuss the interplay be-

tween these characteristics and propose a simple phenomenological model

of rough contact.

Introduction

Contact and friction interactions play an essential role in many quotidian contexts,
including those related to industry (e.g., tire-road and wheel-rail contacts, electric
switches, bearings, and brake systems), everyday human activity (e.g., walking, han-
dling, touching, and sitting) and natural phenomena (e.g., earthquakes, landslides, and
glacier motion). Regardless of such prevalence, contact-related mechanisms (friction,
adhesion, and wear) are still not fully understood and thus are among the most cutting
edge research topics in the mechanical community.

Numerous models of contact-related mechanisms exist at structural scale. They serve to
model interfacial normal and tangential sti↵ness, frictional resistance, material removal
on rubbing surfaces (wear), heat transfer between contacting solids, contact electric
resistance, adhesion, interfacial fluid flow, microstructural changes in near-contact ma-
terial layers, fretting life-cycle, debris generation, lubrication, especially in mixed regime,
and other mechanisms. Admittedly, all the aforementioned phenomena are strongly re-
lated to the surface roughness. The associated models can be incorporated in a macro-
scopic/structural model via constitutive interfacial equations. These equations can be
based either on experimental data, and thus remain purely phenomenological, or can
take the microscopic roughness as the starting point. The latter class of models shall
have a greater predictive power, and potentially can be used for a large spectrum of
applications. However, because of the strong non-linearity of the contact/friction mech-
anisms and extreme complexity of surface roughness, construction of a reliable analytical
micro-mechanical model presents a serious challenge. Nevertheless, reliable phenomeno-
logical models can be constructed on the data obtained with microscopic-scale numerical
simulations as it is done in this contribution.

Methods

We used a spectral-based boundary element method [1] to solve friction- and adhesion-
less normal contact between two elastic half-spaces with rough surfaces in the framework
of infinitesimal deformations. Numerical simulations of contact were carried out on syn-
thetic rough [2] surfaces with controlled spectra. The study is focused on the analysis
of the evolution of the true contact area under increasing squeezing pressure since the
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true contact area is one of the most important characteristics of the “rough contact”.
To improve the accuracy of the contact area simulations, we used a simple technique
which is based on estimation and correction of the discretization-error; and includes
the evaluation not only of the contact area but also of the contact perimeter [3]. This
technique enables us to study rough surfaces within unprecedently wide range of param-
eters without loss of accuracy. Therefore, this analysis could be done using moderate
computational grids of only 2048⇥2048 points on surface.

Results

Apart from the classical scaling of the squeezing (nominal) pressure by the root mean
squared roughness gradient (square root of the doubled second spectral moment), we
identified new trends. First, we demonstrated a weak but persistent dependence of
the contact area on Nayak parameter. This parameter, rarely used in characterization
of surface roughness, is central in Nayak’s random process model of rough surface [4].
Apart from the zero-th and second moment, this dimensionless parameter includes the
forth moment and determines the breadth of the roughness spectrum. Second, in the
literature on the topic, the role of the Hurst exponent (related to the fractal dimension)
was studied intensively, it characterizes the decay of the spectrum with the increasing
wavenumber, and was believed to determine the contact area. We showed that for the
same Nayak parameter but di↵erent Hurst exponents, the contact area is the same,
whereas for the same Hurst exponent and di↵erent Nayak parameters, the results are
di↵erent. Thus, we demonstrated that the believed dependence on the Hurst exponent
is explained by the underlying dependence of the latter on Nayak parameter. Third,
we deduced a phenomenological, weak logarithmic dependence of the contact area on
the Nayak parameter and formulated a pressure-dependent friction law with physically
meaningful parameters [5].

Discussion

The presented study deals with artificially synthesized “rough” surfaces, which should
be obligatory smooth at small scale in order to permit accurate resolution of continuum
mechanics equations. The necessity to introduce a high-frequency cut-o↵ in the spectral
representation, or equivalently keep the surface smoothness is physically questionable
and calls for a critical discussion. We plan to address these questions and suggest
possible research directions.
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Summary: Microscopic surface structures can modify the emergent friction

properties at macroscale, especially in the case of anisotropic designs. Here,

we present a two-dimensional version of the spring-block model to investi-

gate the e↵ects of patterns such as grooves, cavities, pillars and complex

structures on the surface frictional properties.

Abstract

The frictional behavior of macroscopic bodies arises from various types of interactions

occurring at di↵erent length scales between contact surfaces in relative motion. While it

is clear that their ultimate origin lies in inter atomic forces, it is di�cult to scale these up

to the macroscopic level, including other typical phenomena such as surface roughness,

elasticity or plasticity, wear and specific surface structures. For this reasons, simplified

models have been developed to address specific friction problems [1]. In particular, one

of the most used models is the spring-block model, which has been adopted to investigate

many aspects of dry friction of elastic materials [2][3].

In this presentation, we illustrate a two-dimensional version of the spring-block model

(figure 1a) to describe the frictional behavior of an elastic patterned surfaces sliding on

a rigid substrate [4]. Our principal aim is to compare the results with those obtained

in the one-dimensional model [5][6] and to extend our study to more complex patterns,

e.g. arrangements of cavities or anisotropic structures like those found in biological

materials, and to two-dimensional surfaces with functionally graded material properties.

This formulation of the spring-block model allows to consider a more realistic situation

and captures a variety of behaviors that can be interesting for practical applications.

We show how static friction can be e↵ectively tuned by appropriate design of surface

features and we identify some mechanisms that modify the global behavior during the

transition from static to dynamic friction. Some of these e↵ects appear to be universal,

in the sense that they take place regardless of the specific configuration of the surface.

We investigate the role of the geometry of the structures, showing that friction can

be considerably reduced by increasing their perimeter (figure 1b). Finally, we illustrate

how the friction coe�cients of anisotropic surface structures depends non-trivially on the

sliding direction. Overall, we find that the two-dimensional spring-block model is able

to capture these e↵ects due to complex structures, similar to those commonly observed

in nature or employed in technological fields.
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(a) (b)

Figure 1: (a) Discretization of a square surface into a 2-D spring-bock model, showing

the mesh of the internal springs. (b) Example of winding tread patterns analyzed with

the spring-block model allowing to reduce the static friction coe�cient.
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In this work we study the adhesive behaviour of probes, which indent a thin 
layer of micro/nanometric thickness coated on a rigid foundation. It is shown 
that ultrastrong adherence can be obtained. The study is particularly suited for 
polymeric coatings over metals.  

 

Introduction 

Adhesion is a very debated topic in contact mechanics, which spans different fields of 
application, from adhesion of rough surfaces to bioinspired adhesive mechanisms. Different 
researchers have tried to imitate the design strategies adopted by insects (e.g. geckos, ants) and 
develop "optimal" surface profile to enhance adhesion. Nanopatterned surfaces, with repeating 
pillars or dimples are nowadays commonly adopted by many researchers who aim to develop 
pressure sensitive adhesives. In the present work we study the adhesive behaviour of rigid 
probes with power law profile that indent thin elastic layers of micro/nanometric thickness 
coated on a rigid foundation. The adhesive solution is obtained generalizing the adhesiveless 
solution obtained by Johnson-Jaffar-Barber [1-3], to the case of short-range adhesion (JKR 
type) retaining only the original “thin layer” approximation proposed by Johnson [3], who 
assumed that the layer thickness b is much smaller than the radius of contact a, i.e. b<<a, so 
that plane sections remain plane upon deformation. Plane and axisymmetric problems are 
handled for both cases of frictionless unbounded and bounded compressible layer. We show 
that very strong adherence (up to the theoretical strength) can be reached both in line contact 
and in axisymmetric contact for thin layers, typically of nanoscale size. We give analytical 
predictions of the loading curves and provide indentation, load and contact radius at the pull-
off. In line contact adhesion enhancement occurs as an increase of the actual pull-off force, 
while for the axisymmetric case, we show that the adhesive behaviour is strongly affected by 
the indenter shape. Nevertheless below a critical thickness of the layer (typically below 1 μm) 
the theoretical strength of the material is reached. This in contrast with the axisymmetric 
Hertzian case, which has been shown to be insensitive to the layer thickness. This suggests a 
new possible strategy for "optimal adhesion". It is shown that due to Poisson effects the case of 
compressible confined layer is more efficient that the case of frictionless layer as the same 
detachment force is reached with smaller contact area. High sensitive micro-/nanoindentation 
tests may be performed using probes with different power law profiles for characterization of 
adhesive and elastic properties of micro-/nanolayers. 
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Summary: We start with a simple observation on the nature of nominally flat, 
fractal surfaces and give an argument in favor of asperity models, and suggest 
a semi-analytical approach. We then apply a relatively new idea of an 
asperity-free formulation of junction sizes in debris formulation to the model 
asperity. 

 
Abstract 
Rough surface topography is often described using the fractal model, wherein the power 
spectral density follows the law � �2 H 1

2DC q � �v  , with H  being the Hurst exponent, q  is the 

wave vector. This also assures the property of self-affinity. Below a certain wavevector minq , 
the power spectrum is assumed to be either constant (in which case this number is called ‘roll-
off’) or zero (‘cut-off’). This minimum wave-vector is necessary to make the surface appear 
nominally flat. Its corresponding wavelength O  is a characteristic length scale of the surface, 
at the macroscopic end of the scale. In the current talk, we focus on these large-scale 
structures. It is easy to see that a nominally flat surface of the type in question with spatial 

extent L  should exhibit approximately � �2N L O  fractal asperity peaks. The nature of 

those minq -free asperities has been studied in detail by the author in [1]. In [2], it was shown 
that for a number of macroscopic quantities, the fractal asperity can replaced with a single, 
regular indenter of radially symmetric shape, described by the shape function � � Hz r c r � . 

This description does however not truly eliminate the fractal paradox, which now appears in 
form of a stress singulary at r 0 .  
In the talk, we will further analyze indenters of this kind of indenter, in single contact and in 
larger numbers with a given height distribution. 
Special focus is put on the question of the feasibility of wear particle formation. Following the 
works of Rabinovicz [3], the recent works from Molinaris group [4] and the very fresh idea of 
an asperity-free size criterion, based on energy-density [5], we investigate under which 
conditions such indenters could indeed form a particle. To assess the applicability to rough 
surfaces, some results of numerical BEM-simulations are given for comparison. 
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Optimal control approach to simulating wear under cyclic

loading
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A control optimal approach is developed to estimate the asymptotic state
reached by a solid continuum subjected to wear contact submitted to a
cyclic loading. The stabilized state is the solution of a minimization prob-
lem in order to define the stabilized geometry for wear problem of a half-
plane under contact with a cyclically moving indenter.

Introduction

We consider a cylindrical indenter with radius R in contact on an half-plane. The inden-

ter has a cyclic horizontal motion with amplitude U and an imposed vertical displace-

ment �. As the displacement is imposed, the loss of matter is finite and the thickness of

the loss volume is less than �, it tends to a stabilized value. The presentation proposes

an estimation of the loss of matter using two main ideas. The simulation of the contact

using the Galin’s equation, and their variations with respect to the geometry of the

contact with the indenter, and the determination of the stabilized state with respect to

a wear-contact criterion written in terms of energy.

Variations of the shape, and state of the system

The surface of the half-plane evolves and its shape is defined by the position x, ✓(x, t)
of the surface point. Because of the loss of matter the vertical position ✓ is a function

of time. For an half plane in linear elasticity, the displacement along the boundary is

determined by the distribution of the traction imposed on the surface by the relation of

Galin’s [3]:

c1u,x(x) = c2�
yy
(x) +

1

⇡
Fp

Z +a

�a

�xy
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x� s
ds, (1)
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x� s
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, E is the Young’s modulus, ⌫ is the Poisson’s ratio,

Fpf is the principal value of f in the sense of Cauchy. The traction on the surface is

given in terms of the Cauchy stress tensor : To
= �o. ey = �yy

o ey + �xy
o ex. If during

the change of geometry, the traction T is conserved, the variation of the displacement

on the upper surface is:
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The conservation of f is given by D✓f = lim✏!0(f(x, ✏✓, ✏) � f(x, 0, ✏))/✏) = 0. As

D✓n = ✓,x ex, Ṫx = (✓�xx
o ),x and Ṫy = (✓�xy

o ),x. These variations of traction are

applied at point (x, y = 0) to conserve the value T o
of traction on the surface at point

(x, y = ✓(x)). These equations are di↵erent from those proposed in [4]. They can be

obtained directly applying classical integral equations.

The contact condition and the wear process

Denoting the gap to contact by w = � � v � ✓(x) + g(x, t). The contact condition is

defined by

Ty � 0, w  0, Tyw = 0. (3)

� is the vertical position of the cylindrical indenter of radius R, g describes the shape of

the indenter center at point (X(t) = A sin⇡
t

T
), g(x, t) =

(x�X(t))2

2R
. This condition

can be replaced by a regularized form : Ty = �(w), where � is a convex and increasing

function.

The optimal condition

The loss of matter is governed by a wear criterion expressed in terms of local energy

release rate as proposed in [1][5]

G = W ("(u))� n.�.ru.n  Gc; W =
1

2
" : C : ". (4)

The optimal shape (x, ✓o(x)) is given by the optimal condition

min
✓,B

J ; J(✓, B) = Gc

Z B

B
✓ dx+ ↵

Z

T

Z B

B
< G(x, t)�Gc >+ dxdt. (5)

where < f >+= (f+ |f |)/2. The first term corresponds to the dissipation of the system.

The last one implies that the criterion is obtained at a minimum set of point during the

peroid T of the loading. Due to interaction with the geometry change, G is an implicit

fonction of ✓.

Results and conclusion

The properties of the problem of optimisation is discussed and an adapted algorithm of

simulation is proposed. In particular the condition of contact is regulatized as proposed

in [4] The influence of the shape variations on the distribution of pressure is analysed.
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Frictional contact and wear along virtual interfaces
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Summary: In this work, features of surface-to-surface contact discretization
are combined with the extended finite element method to handle contact
problems along virtual surfaces in 2D. We focus on the incorporating of
geometrical changes, which result from wear process and are taken into
account by mobile virtual interfaces.

Interactions between solids involving contact, friction, adhesion and wear are complex
both with regard to their mathematical description and numerical treatment. The inter-
facial nature of these phenomena lays a strong emphasis on the interface discretization
schemes. Stability and appropriate patch-test performance of these schemes are neces-
sary ingredients to ensure the overall accuracy and robustness of the associated numerical
treatment.

A relative motion between contacting bodies can lead to material removal (wear) on
rubbing surfaces. The resulting geometrical changes along the interface a↵ect the dis-
tribution of contact pressures, leading to a modification of the wear evolution and thus
determines the lifespan of the system. Standard numerical treatment of wear uses the
assumption of a slow surface change and thus relies on the notion of equivalent wear
cycle. It also involves: (i) constitutive local wear laws determining the wear depth
evolution at every e↵ective cycle, (ii) remeshing procedures to capture the geometrical
changes at the interface, and (iii) field remapping of history variables, if their storage
is required in used nonlinear material models. A di↵erent approach to this problem is
elaborated in this work.

Methodology

The surface-to-surface discretization scheme combined with penalty/Lagrange based res-
olution techniques for the frictional contact constraints, treat accurately the contact
problems along non-conformal interfaces [1]. The extended finite element method (X-
FEM) enables to handle intra-mesh discontinuities: voids, cracks, material interfaces [2].
In this work we extend the idea of embedded interfaces for tying problems [3]: Combin-
ing the embedded interfaces within the X-FEM framework with the surface-to-surface
contact formulations, results in a simplified numerical framework to treat contact prob-
lems along virtual interfaces. These virtual interfaces passing through the mesh volume
(not necessarily through interfaces delimited by element boundaries) can incorporate
enriched geometrical features, such as surface evolution due to wear. In addition to
handling surface evolution, this computational scheme ensures accurate representation
of surface tractions, which is essential for wear simulation.

As illustrated in Figure. 1, we propose to use the embedded/virtual interface �v, to
describe the geometrical changes resulting from wear. Surface �v coincides with the
unworn surface �c2 ⇢ @⌦2 at the beginning of the simulation. Upon loading, the material
of ⌦2 in contact with ⌦1 experiences wear and the surface �v propagates into the bulk
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to capture the surface evolution. The approach includes: (i) mortar method to treat
frictional contact between the real interface pair (�c1��c2) initially and between virtual-
real interface pair (�v � �c1) subsequently (ii) an energy based wear law to determine
the wear depth (wear depth is proportional to the dissipated energy per equivalent wear
cycle) (iii) virtual interface �v to locate the evolving worn-surface and (iv) selective
integration within blending elements intersected by the worn-surface.

Standard element
Blending element
Removed element
Worn-out volume
Virtual interface

w
ea

r e
vo

lu
tio

n

t=0 0<t<n t=n
Figure 1: Wear at the interface, modeled using virtual interface �v (total simulation
time t = n).

Conclusion

The proposed method provides a simplified solution to the numerical treatment of wear
compared to conventional ones. It can be applied typically for fretting of disk-blade
assemblies in aircraft engines and power generating turbines, wear of the cylinder-liner
system in automotive applications and other areas in which wear plays a significant
role. In perspective, this method will be tested on various configurations to quantify its
performance in regard to numerical aspects such as convergence.
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Modeling of wear considering heterogeneous friction
material
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Summary: This paper focuses on the methodology leading to simulate
wear generation in a heterogeneous material submitted to contact sliding.
The strategy consists to enrich the contact sti↵ness in terms of gap and
behavior. The non-linear behavior of the contact sti↵ness is obtained using
a homogenization method near contact interface (FE2).

Introduction

Nowadays, many industrial structures are more and more made of highly heterogeneous

materials due to their good mechanical behavior. For example, in the transportation

domain, frictional materials are of a big interest. A major problem in transportation, in

particular for braking applications, is the durability of components subjected to rubbing

contact, mainly wear and its consequences in terms of generation and particles emis-

sion. The latter one represents a major ecological stake. The materials of friction used

are heterogeneous and the solicitations applied lead to the formation of interface layer,

called third body [1], from the wear particles. The latter one plays an important role in

the phenomenon of friction influencing the system performances (energetics, noise pol-

lution, rate of wear). The current modeling of the rubbing systems considers generally

materials in the contact as homogeneous and interface as continuous, what is insu�cient

to understand wear phenomenon. The major di�culty is to consider at the same time

the contact and the system scale. Considering the problem of contact simulation, Finite

element method (FEM) is almost used to model such structures. Usually, the whole

structure and all heterogeneities are meshed explicitly. Doing so is very high demanding

numerically.Some authors use analytical methods, see the work of Leroux and al[2] and

among all, because of their fast computation time but they are very restrictive. Because

of high computation time induced by contact problem and material heterogeneity, tak-

ing the latter one into account in a global structure requires multiscales methods. In

[3], Temizer and al., improve a multiscale finite element method to integrate material

heterogeneity and material damage in a contact problem. Many authors have shown

that surface instabilities have an impact on the contact pressure repartition, see the

work of Dufrénoy and al.[4]. These above developments assume the material in contact

as homogeneous and most of them don’t take wear mechanisms into account.

Strategy

In this paper we propose using a multiscale strategy(FE2) to simulate wear generation

in a heterogeneous material context submitted to contact sliding. Thus, the strategy

incorporates two main steps. The first one is to discretize the whole heterogeneous

structure into a set of patches, calculate the contact sti↵ness of each patch by the way

of a homogenization method and to embed it into a large scale numerical model. The

second step aims to compute the wear lost using an Archard wear law [5], to integrate
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it in the homogenization strategy and to embed it into the large scale numerical model

in terms of gap. The gap is updated in function of the lost wear. In this paper the main

wear mechanism considered is the flow debit in the concept of tribological circuit [1].

The whole strategy is summarized in the figure1 below. One of the key contribution of

the strategy proposed in this work is the reducing of computation time compared to the

traditional FEM method. Also, not only the flow debit in the concept of tribological

circuit can be considered but also other mechanisms can be introduced such as crack

and particle decohesion at the microscale.

Figure 1: The global strategy showing the wear modeling considering heterogeneous

friction material

First results

A comparison between an explicit and a homogenized problem considering a heteroge-

neous friction material rubbing on a disk is performed. Our first results obtained via

the multiscale strategy explained above are in a good agreement with the traditional

FEM method. Advanced results will be presented at the conference.
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The wear of a cylindrical punch composed of multiphasic materials is studied 
under the assumption of Archard’s law of wear. In the case of annular cylinder 
with rings of alternating material, the changes in surface topography and 
pressure distribution during the wear process is obtained and validated by the 
Boundary Element Method (BEM). For the cylinder with randomly distributed 
multiphases, the limiting profile in steady wear state as well as the root mean 
square (RMS) of surface gradient is numerically calculated with the BEM based 
on a theoretical analysis.  
 

Introduction 
The friction between a vehicle’s tire and the road is an everyday contact problem. The pavement 
surface topography and mixture of aggregates and asphalt binder play a significant role in the 
skid resistance as well as tribological behavior of rubber sliding contact. It is also known that 
the friction coefficient in the contact between an elastomer and a rigid rough surface is roughly 
in the order of the mean slope of the surface [1]. In this talk we consider wear of a multiphasic 
composite in sliding contact with an elastic half space under a constant normal load. Two cases 
are investigated to study the effects of material composition under the assumption of Archard’s 
law of wear. One is an ideal heterogeneous annular cylinder with rings of alternating material 
(e.g. representing aggregate and binder of the asphalt respectively). The Method of 
Dimensionality Reduction (MDR) is used to numerically calculate the wear of the surface and 
the pressure distribution in each time iteration. The other one is a cylinder with randomly 
distributed multiphase materials having different wear coefficients. We proposed a simple 
theoretical solution for the limiting profile at the stationary state. Based on that, the final surface 
topography with any combination of multiphases can be calculated with the BEM. The 
dependence of surface gradient on the ratio of wear coefficients of biphasic materials for both 
cases is discussed.  
Case of annular cylinder 
 

 
 

(a) (b) 
Figure 1: Wear of an annular cylinder (a) with 5 rings having different wear coefficient 
k2/k1=10, (b) worn profiles during the wear process (ratio of ring width h2/h1=1).  
 
The algorithm employed to solve the wear problem with the MDR can be found in [2], which 
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gives exact solution of axially symmetric contact problems [3], including the case of this 
annular cylinder with rings. The Figure 1 shows an example of the time-dependence of wear of 
the indented cylinder with five rings: 3D profiles f(r) at distinct time steps. The numerical 
results from the simulation with the BEM are added in this figure for comparison. However the 
numerical calculation with the MDR is much faster than the BEM.  
For the piecewise constant distribution of wear coefficients, the resulting stress distribution of 
the limiting profile will be piecewise constant. It is found that the constant stress level of rings 
with the higher wear coefficient is reached significantly faster. Therefore, the time needed to 
reach the limiting profile is mostly dependent on the lowest wear coefficient. 
 
Case of randomly distributed multiphase materials  
Theoretical analysis shows that the stress in the areas with the same phase (wear coefficient) 
will be constant and same at the final stationary state. Therefore, the final deformation as well 
as the surface topography of a multiphasic composite can be calculated using the theory of 
contact mechanics, or numerically using the BEM. Figure 2 is an example of biphasic composite 
with wear coefficient k2/k1=10.  
 

 
 

(a) (b) 
Figure 2: An example of biphasic composite: (a) distribution of two phases with wear 
coefficient k2/k1=10 (white and black); (b) the worn surface topography at the stationary state.  
 
In this talk the theoretical solution for limiting profile of homogeneous material will be 
provided, then the numerical results for biphasic composite using the BEM will be presented. 
The dependence of the RMS of surface gradient on wear coefficient k2/k1 and area ratio of two 
phases will be discussed. The experimental investigation for wear of the steel-brass composite 
are carried out and will be compared with the numerical results.  
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Error estimation and computational simulation
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Summary: We present a quasistatic problem of an elastic body in frictional

contact with a moving foundation. The main aim of this talk is to introduce

a fully discrete scheme for numerical approximation and an error estima-

tion of a solution to this problem. Finally, computational simulations are

performed to illustrate these results.

Introduction

For any given mechanical contact problem from mathematical point of view we are
interested in obtaining existence and uniqueness of the solution to the model. Theory
of variational or hemivariational inequalities is useful in the approach to obtain these
results. In many cases the proof of existence and uniqueness of the solution is not
constructive. The next step in dealing with these cases is usually presenting the discrete
numerical scheme and estimation of finite element method error. In this talk we focus on
mechanical contact problem with wear modeled by Archard’s law. The friction between
body and the foundation can cause the foundation to wear over time.

Mechanical contact problem

An elastic body occupies a domain ⌦ ⇢ Rd with the boundary divided into three disjoint
measurable parts �D, �C , �N , where the part �D has a positive measure. The body is
clamped on �D with a displacement u equal to 0. The forces fN and f0 act on �N and
in ⌦, respectively. We assume that the acceleration of the body is almost zero, so our
problem is quasistatic. In our model framework of the small strain theory is employed.
We are interested in the body displacement u and foundation wear w in the time interval
[0, T ], with T > 0.

From the viewpoint of Contact Mechanics, the intrinsic conditions describe the relations
between normal and tangential components of displacement u and stress �, and take
into consideration the wear e↵ect w caused by the moving foundation with a given
velocity v⇤. We consider the following conditions on �C :

- a normal compliance condition with unilateral constant

u⌫(t)  g, �⌫(t) + p(u⌫(t)� w(t))  0,

(u⌫(t)� g)
⇣
�⌫(t) + p(u⌫(t)� w(t))

⌘
= 0

)

- a type of Coulomb’s law of dry friction

�⌧ (t) = µ p(u⌫(t)� w(t))v⇤(t)kv⇤(t)k�1

- the evolution of the wear function

w
0(t) = kv⇤(t)k p(u⌫(t)� w(t)), w(0) = 0.
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We assume that the foundation is made of a hard, perfectly rigid material covered by
a soft, wearable layer of thickness g > 0. Detailed formulation and derivation of these
conditions is presented in [2].

Variational formulation

Using the standard procedure and Green’s formula we obtain the variational formulation
of considered problem in the following form.

Find u : [0, T ] ! U and w : [0, T ] ! L
2(�C) such that for all t 2 [0, T ]

hFu(t),v � u(t)iV ⇤⇥V + '(t, w(t),u(t),v)� '(t, w(t),u(t),u(t))

� hf(t),v � u(t)iV ⇤⇥V for all v 2 U,

w(t) =

Z t

0
kv⇤(s)k p(u⌫(s)� w(s)) ds.

Here V = {v 2 H
1(⌦)d | v = 0 on �D}, U = {v 2 V | v⌫  g on �C}, the operator

F : V ! V
⇤ is related to a certain elasticity operator and functions '(t, w,u,v), f(t)

are connected with the other data of the contact problem.

Let us note that variational formulation consists of a variational inequality and an
integral equation that are coupled and cannot be considered separately. The existence
and uniqueness of solution to this problem was also presented in [2].

Error estimation and simulations

We introduce a fully discrete scheme (both spatial variables and time are discretized)
for the variational formulation. This discretization is studied in order to employ finite
element method framework and estimate solutions of considered problem. In the talk we
introduce this discretization as well as a numerical error estimation which guarantees
a convergence of estimated solutions to original one. Finally, we present results of
computational simulations showing the evolution of displacement of the body and wear
of the foundation for a set of sample data. The details are contained in [1].
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Non-classical contact conditions and size e↵ects
in Cosserat solids
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Summary: A generalized contact model is developed for the Cosserat con-
tinuum. Based on micromechanical considerations, the model provides a
link between the classical contact variables, i.e., normal gap and contact
traction, and additional contact variables characteristic for the Cosserat
continuum, i.e., micro-rotations and micro-moments.

Microstructured materials may exhibit size e↵ects when the characteristic dimension of
the body is su�ciently small compared to the characteristic size of the microstructure.
The classical continuum theory is not capable of predicting the related size e↵ects as
it possesses no intrinsic length. One of the feasible approaches to the modelling of
the size e↵ects is to resort to generalized continuum theories that include gradient-type
terms and the related intrinsic length-scale parameters. In this work, we focus on the
Cosserat continuum because in this model the additional degrees of freedom have a clear
physical interpretation and can be directly related to the rotations of the microstructural
elements [1].

Micro-/nano-indentation is a typical example of a contact problem in which size e↵ects
can be observed experimentally. Formulation of the related boundary value problem
requires that adequate boundary conditions are specified on the contact surface. The
main issue here is that application of a generalized continuum model, e.g., the Cosserat
model, implies that boundary conditions involve not only the displacements and surface
tractions, as in the classical continuum, but also additional boundary conditions that
are related to the additional unknowns or gradient terms. The simplest choice is to
assume that the related generalized tractions are equal to zero, e.g., [2], but this choice
is not necessarily justified from the physical point of view.

In this work, we develop a generalized contact model for the Cosserat continuum. The
model is based on simple micromechanical considerations inspired by masonry-like struc-
tures. The essential feature of the model is that contact tractions and micro-moments
are linked in a consistent manner. In particular, for an elastic microstructured solid,
the potential structure of the problem is preserved. The model has been implemented
in the finite-element method, and illustrative examples are provided.
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Equilibrium solutions in structural mechanics with a small Lipchitz
continuous or with a monotone non linearity
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We address the equilibrium of structures which involve unilateral contacts
which may be of two types. A first case involves unilateral springs, often
simplified models of bumpers. The second case involves rigid contacts and
their approximation with hardening barrier springs. The Newton-Raphson
algorithm may be accomodated to these cases (using respectively Lipschitz
continuity or monotony). Asymptotic expansions as well as numerical al-
gorithms are provided.

Introduction

We study equilibrium solutions of some non linear systems of structural mechanics: we
address the case of a soft contact such as a weak unilateral spring but also the case
of rigid contacts (for example involved in backlash); the structure may involve rigid
movements;

Unilateral springs are often simplified models of bumpers usually made of viscoelastic
materials; the model has been addressed in the dynamic case in [1] and [2]: asymptotic
expansion of periodic solutions have been obtained. This can be considered as an exten-
sion of the use of normal modes of a linear free system in order to study the dynamics
of the forced associated linear system. In [1], the Lindstedt-Poincaré method was used
in order to derive approximate non linear normal modes (a periodic solution close to a
linear normal mode) for small non linearity.

In the smooth case the well known Newton-Raphson algorithm provides a sequence to
approximate the solution of non linear equations or implicitely defined functions p 7! u

solution of F (u, p) = 0.

@F

@u
||(uk,p)(uk+1 � uk) = �F (uk, p)

Usually, we start from a reference solution u0 of F (u0, p0); and the algorithm converges
for p close to p0. A key hypothesis is that the norm of the inverse of the linear map
v 7! @F (u,p)

@u v should be not too big. We use some notions presented in Dontchev-
Rockafellar [3]; more precisely we use ideas going back to Hildebrand-Graves, 1927.

We no longer assume that the function F used in the equilibrium equation F (u, p) = 0 is
di↵erentiable but that there exists a strict estimator H of F for u close to a reference
solution u0: F (u0, p0); the function H is replacing the use of @F

@u . Strict estimator means
that E = F �H is Lipschitz continuous function with lipshitz constant µ; moreover H
should be invertible (analogous to the invertibility of @F

@u ); the inverse H
�1 should be

Lipschitz continuous with Lipshitz coe�cient �. Finally the following inequality should
hold

�µ < 1
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This assumption is analogous to the assumption on the norm of the inverse of the linear
map v 7! @F (u,p)

@u v.

An example of a system of this case in in fig. 1 ; an example of the next case is in fig. 2.

We study the approximation of the second case involving rigid contacts with a structure
which involves nonlinear springs which harden in compression; I call these springs, hard-
ening barrier springs; the stress-strain law involves a function like x

1�x ; this function is
used in optimization and is an example of a barrier penalty function; in structural me-
chanics, it replaces a rigid contact with a hardening spring. Here, the study is restricted
to the static case; the dynamic situation will be addrressed in a forthcoming paper. The
idea is not of solving the regularised problem but to use them to obtain a solution of the
original problem Here we intend to use ideas from non smooth optimization to prove
existence of solutions and to derive a numerical algorithm to find them.

u, f

unilateral contact!

Figure 1: One mass with 2 springs with a weak unilateral one, load f

R1

x1

X1

U1 x2U2

X2
u1, Y1 u2, Y2

Two masses with two
“barrier springs” at rest

Two masses with two
rigid contacts at rest

loaded system with
Y1 + Y2 < 0 and
Y2 < E2[U2 � U1]

Figure 2: Two masses with 2 rigid contacts, loads Y1, Y2
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[2] H. Hazim, N. Fergusson, and B. Rousselet. Numerical and experimental study for
a beam system with local unilateral contact modeling satellite solar arrays. In
Proceedings of the 11th european spacecraft structures, materials and mechanical
testing conference (ECSSMMT 11), 2009. http://hal-unice.archives-ouvertes.fr/hal-
00418509/fr/.

[3] Asen L. Dontchev and R. Tyrrell Rockafellar. Implicit functions and solution map-
pings: : a view from variational analysis. Springer, 2009.
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Summary: The aim of this work is to study the variational formulations in
nonlinear small strains (visco)elasticity of some rate-dependent interactions
between the boundaries of two bodies. The corresponding evolution bound-
ary value problems constitute a unified approach to study various interface
models and their analysis is based on approximation results for evolution
variational inequalities. Several examples are presented to illustrate the
capability of the proposed model.

Introduction

This work is concerned with the study of some nonsmooth evolution contact prob-

lems which describe various complex interactions between the boundaries of two nonlin-

ear (visco)elastic bodies, including relaxed unilateral contact conditions, adhesion and

(non)local friction laws, in quasistatic or dynamic processes.

Quasistatic elastic problems with unilateral contact conditions and Coulomb friction law

have been analyzed in [1, 2] and with an adhesion law in [3, 4], where an evolution of

the intensity of adhesion was also considered. The normal compliance model has been

investigated by several authors, see e.g. [5, 6] and references therein.

Dynamic viscoelastic problems with nonlocal friction laws, obtained by suitable regular-

izations of the normal component of the stress vector appearing in the Coulomb friction

law, were analyzed in [7] and dynamic problems coupling unilateral contact, recoverable

adhesion and nonlocal friction were studied in [8].

A quasistatic contact problem

In this section, the results described in [9], where a static contact problem with relaxed

unilateral conditions and Coulomb friction was studied, are extended to an evolution

variational inequality involving a di↵erentiable functional. First, an implicit variational

inequality is analyzed by an incremental method. Second, applications to two-field

formulations of some nonlinear elastic quasistatic contact problems with friction are

presented. These results have been partially published in [10].

A dynamic contact problem

In this section is presented the extension of the contact conditions considered in [11]

to the case of a contact condition that contains not only the gap function but also the

velocity. The corresponding variational problem has a three-field formulation and the

applications include nonlinear constitutive laws of Kelvin-Voigt type.

These formulations enable a direct and simpler approach to study some complex surface

interactions, including normal compliance, limited interpenetration, unilateral contact,

adhesion, local and nonlocal friction laws.
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Summary: A coe�cient of friction free determinant consistent Jacobian
matrix is used in the Newton-Raphson method for the numerical resolution
of the discrete quasi-static incremental frictional contact problem. A mixed
static-kinematic formulation smoothed by the use of a smoothing function
is adopted which guarantees a local quadratic convergence rate.

Given a sequence of external applied forces or prescribed displacements, the quasi-static

incremental problem (QI) consists of solving the system of equilibrium equations to-

gether with the unilateral contact conditions and the Coulomb friction law in which the

tangent velocity is approximated by the backward-Euler method. The discrete quasi-

static incremental frictional contact problem is formulated in a mixed manner; the ad-

vantage of dealing with such an enlarged system of equations is the coe�cient of friction

free Jacobian matrix determinant. In this static-kinematic mixed formulation there are

5 unknowns per node in plane problems or 7 unknowns per node in spatial problems:

the increments of the relative tangent displacements, the normal gap, the increment of

a friction multiplier, and the local Cartesian components of the contact force [1].

Both the unilateral contact and the 2D or 3D Coulomb friction (non-smooth) laws may

be expressed in terms of the non-smooth projection function onto the positive part of

the real line (the “plus function”), x+ =
x+|x|

2 = projR+
(x), which has a “kink” at the

origin. This function may be approximated by the smooth function

S(x, Error) =

8
<

:
x+

1
↵(Error) ln(1 + e

�↵(Error)x
), if x � 0,

x+
1

↵(Error)

h
�x↵(Error) + ln(1 + e

↵(Error)x
)

i
, if x  0,

(1)

where ↵(Error) = ln 2
Error , and the su�ciently small quantity Error = maxx2R {S(x,↵)

�x+} = S(0,↵) controls the degree of approximation [2]. The non-smooth system of

equations to be solved in the end of each load increment of problem QI is smoothed by

the use of the family of smoothing functions (1) which guarantees a local quadratic con-

vergence rate to the Newton-Raphson method. The resulting system of (non-symmetric)

algebraic linear equations defining the iterates is well conditioned because, for not too

small values of Error, function S(x,↵(Error)) is a good approximation to the plus

function [2]. The algorithm is able to deal with large coe�cients of friction; for cases in

which problem QI exhibits multiple solutions the algorithm resolves that ambiguity by

choosing the sticking solution.

Solutions to the QI problem for several finite element models of solids are presented. As

an example, Figure 1(a) shows the finite element discretization of a 80⇥ 40⇥ 9.6 mm
3

elastic block with a modulus of elasticity E = 5 MPa, a Poisson’s ratio ⌫ = 0.48 and a

mass per unit volume % = 1.2⇥ 10
�3

g/mm
2
. The lower surface of the block is pressed

against an horizontal rigid obstacle. The upper surface of this model is submitted to

a uniform downward displacement until the total reaction from the obstacle reaches

55 N; then it is submitted to an horizontal motion towards the right until a steady
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sliding state is reached. The coe�cient of friction is µ = 1.1. Figure 1(b) illustrates the

Cauchy stresses during the steady sliding phase (x and y are the horizontal and vertical

coordinate axes, respectively). A three dimensional example will be addressed as well.

q
(F

§
a )

2 + (N §)2 = 1.476

v (Ry = 55 N)

q
(F

§
a )

2 + (N §)2 = 0.0757

H = 9.6 mm (plane stress)

E = 5 MPa

⌫ = 0.48

µ = 1.1

40 mm

80 mm

u

Obstacle

u = 9.8

u = 0

(a)

-1.196e+00

-8.480e-01

-5.005e-01

-1.530e-01

1.946e-01
Sxx

-3.273e-03

1.476e-01

2.984e-01

4.493e-01

6.001e-01
Sxy

-1.230e+00

-8.450e-01

-4.602e-01

-7.544e-02

3.094e-01
Syy

u=9.8

(b)

Figure 1: A tangentially driven elastic discretized block: (a) Finite element mesh, type

of loading and actions on the obstacle, (b) �xx, �yy and �xy (MPa) components of the

Cauchy stress tensor during the steady sliding regime.
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In this work we propose a new lengthscale for wear problems with adhesion. 
Under the assumption of short range adhesion, minimum size of adhesive 
contacts is derived. The effect of adhesion is that of increasing the contact area, 
so the wear coefficient, with respect to the non-adhesive case. 

 

Introduction 

Recently Carpick [1] commented in Science the big effort of the contact mechanics community 
to predict the contact behaviour of rough surfaces even in presence of adhesion. Despite the 
great effort the “contact challenge” showed that this area of tribology is still “challenging” (!) 
and many researchers are actively working on it. Nevertheless the present level of 
understanding does not allow predicting very important quantities in engineering design such 
us friction coefficient and wear. Those two phenomena, essential in the most of engineering 
applications, have not experienced any significative improvement in the last decades. Leonardo 
Da Vinci already 500 years ago estimated the friction coefficient to be roughly 0.25, quite a 
good approximation! Similarly, the “academic sport” of studying rough surfaces, did not get us 
any closer to being able to predict the coefficient of proportionality between wear loss and 
friction dissipation which was observed already by Reye in 1860 [2]. Later Archard [3] 
proposed the wear loss to be inverse proportional to the hardness of the material, but recent 
studies seem to suggest Reye’s hypothesis to be more general. In a recent paper Aghababaei, 
Warner and Molinari [4] have confirmed a criterion for formation of debris of a single particle, 
proposed in 1958 by Rabinowicz [5], which is based on consideration of competition of 
adhesion and plasticity. In the paper so far, and in the review of previous models, an important 
ingredient for "adhesive wear" is surprisingly missing. They do not consider that at the contact 
interface the average size of the micro contacts will strongly depend on the strength of adhesion, 
which is a contradiction to the idea that plasticity junction should be formed in the first place, 
that is before possibly breaking in a wear particle. We have introduced effectively another 
critical length scale in the problem, which is the minimum size of adhesive contacts based on 
JKR theory. The effect of adhesion is, as intuitively expected, that of increasing the contact 
areas, and hence the wear coefficient with respect to the non-adhesive case. We derive an upper 
bound to the radius of asperities, above which very high wear is predicted. As we estimate this 
upper bound to be quite high (hundreds of microns) but not incompatible with worn particle 
size measurements, we find reason for possible further discussion. 
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Beam-to-solid contact interaction in stent graft modeling
for endovascular repair
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In recent years, contact interactions of solid-to-solid as well as beam-to-
beam type have been an active field of research. In this talk, a connection
between the two in the form of a new beam-to-solid contact framework will
be presented. Moreover, its practical application for stent graft placement
during vascular surgery will be illustrated.

Arterial stent placement has become a very successful intervention in vascular surgery.
One of the most common scenarios includes self-expandable stent grafts composed of a
fabric graft and a metal stent mesh. Such stent grafts are used in endovascular aortic
repair (EVAR) to support aneurysms, e.g. abdominal aortic aneurysms (AAA), that are
at risk of rupture. Over the last years, a thrust of research in vascular mechanics and
AAA-related topics has taken place. While significant progress has been made, the com-
putational analysis of stent placement procedures using finite element methods (FEM)
is still not predictive enough to give specific advice to vascular surgeons on how to opti-
mally place the device during EVAR. Possible risks, which are still far from being fully
understood, include a movement of stents away from the desired location (migration),
leaking of blood around stent grafts (endoleakage) and damage of the arterial wall.

Figure 1: Beam-to-beam contact (left) and beam-to-solid contact (right).

From a mechanical point of view, the metal stent can conveniently be represented by 1D
beam elements based on the geometrically exact Kircho↵ theory of thin rods [1], thus
significantly increasing the computational e�ciency as compared with 3D solid-based
approaches. The beam formulation is based on a C1-continuous centerline interpola-
tion using third-order Hermite polynomials, therefore allowing for coarse discretizations.
Contact interaction between the beam elements is modeled using the so-called all-angle
beam contact (ABC) formulation [2], which incorporates a variationally consistent model
transition approach to connect formulations for point and line contact between the in-
dividual beams and, consequently, to allow for arbitrary contact angles. Going beyond
purely beam-based discretizations, many engineering applications also require accurate
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models for the fully nonlinear contact interaction between beams and solid bodies. To
this end, two new formulations for beam-to-solid mesh tying (i.e. tied contact) and
beam-to-solid contact (i.e. unilateral contact) will be presented. Both formulations
make extensive use of cutting-edge mortar finite element methods that have become the
state-of-the-art in finite deformation contact mechanics of deformable solids [3]. Among
the new topics addressed here are biorthogonal Lagrange multiplier bases for third-order
Hermite polynomials as used for the beam centerline interpolation, e�cient numerical
integration strategies and the treatment of strong discontinuities when beams reach over
sharp edges of the solid bodies. In Fig. 1 two typical beam-to-beam and beam-to-solid
contact scenarios are shown.

The modeling of beam-to-solid mesh tying as well as beam-to-solid contact is also ubiq-
uitous in the case of stent graft placement during EVAR. Beam-to-solid mesh tying
is applied to couple the metal stent wire with the synthetic graft material in typical
devices for AAA, see Fig. 2 (left). This is necessary because the employed Hermite
polynomial interpolation for the beam centerline is not compatible with standard FEM
shape functions, and a matching mesh discretization is therefore impossible to achieve.
Stent grafts are usually implanted by crimping them into a very thin catheter. Next the
catheter is used for a minimally invasive stent placement at the desired position in the
AAA before the stent graft is eventually released. A mechanical model of the releasing
process is shown in Fig. 2 (right) and it is clear that this process involves some serious
challenges for the unilateral beam-to-solid contact formulation.

Figure 2: Beam-to-solid interaction: stent graft as an example for mesh tying (left) and
bare-metal stent in catheter as an example for contact (right).
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A new analysis for parallel beams contact
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Summary: The full existence and uniqueness criterion of the closest point
procedure is analyzed in detail for the curve-to-curve situation in the case
of the multiple solutions. Point-to-curve and curve-to-surface (as curve to
solid beam) contact algorithms are compared. The reduced and ad-hoc
criteria used in earlier publications are revised and discussed in numerical
examples.

Introduction

The existence and uniqueness criterion of the Closest Point Procedure (CPP) is the first
and the most important step in order to formulate the corresponding contact algorithm
for any geometrical contact pair such as surface-to-surface (STS), curve-to-curve (CTS),
curve-to-surface (CTS) etc. A beam-to-beam contact algorithm is normally arising
from the curve-to-curve closest point procedure, and it is well known that the solution is
multiple for the parallel straight beams. Here we are analyzing in detail the full criterion
for curve-to-curve CPP and studying especially the case of the multiple solutions. This
case geometrically leads to the parallel (offset) curves or mechanically to the parallel
beams contact. This includes a wide range of situations: wire ropes, knots etc. The
careful analysis recovers that the contact algorithm which is capable to solve this problem
includes the point-to-curve, surface-to-surface and the curve-to-surface algorithms.

Closest point projection procedure for curve-to-curve contact

In order to analyze the full criteria for the existence and uniqueness, the CPP procedure

F(s1, s2) =
1

2
∥ρ1(s1)− ρ2(s2)∥

2 ≡
1

2
∥ρ1(ξ

1)− ρ2(ξ
2)∥2 −→ min . (1)

is formulated dually in the coordinate system attached to both curves, see Fig. 1:

Figure 1: Definition of local coordinate systems (τ i,νi,βi) and (τ i, ei,gi)

Here τ i, νi, βi are Frenet vectors, ei is a unit vector of the closest distance vector,
gi = τ i × ei. If the second derivative for F in eqn. (1) is positively determined, then
solution exists and is unique. A Sylvester criterion showing the positivity of the matrix
F

′′

recovers that the determinant should be positive

detF
′′

= (1− k1r cosϕ1)(1− k2r cosϕ2)− cos2 ψ > 0 (2)
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with cosψ = τ 1 · τ 2. From the common view, it seams that if the angle ψ between
curves is far away from zero (crossing tangents) then the closest projection procedure
should be unique, which is the case for the straight beams. A significant example is a
parallel (or offset) curve generated as

ρ2(s, r,ϕ1) = ρ1(s) +Re1(ϕ1) = ρ1(s) +R(ν1 cosϕ1 + β1 sinϕ1) (3)

The tangent vector of the offset curve is derived by using the Serret-Frenet formulas

τ 2 =
∂ρ2(s, r,ϕ1)

∂s
=
∂ρ1(s)

∂s
+R

e1(ϕ1)

∂s
= τ 1(1− k1R cosϕ1) +Rκg1. (4)

One can see, that the distance function F in eqn. (1) is constant for each point s along
the curves and the matrix F′′ is singular, because the determinant in eqn. (2) is zero
detF

′′

= 0. However, an offset curve can be generated in a wide range of angles ψ
between the tangent lines. For example an offset by normal ν1 (ϕ1 = 0) recovers
cosψ = τ 1 · τ 2 = 1 − k1R and an offset by bi-normal β1 (ϕ1 = π

2
) recovers for angle

between tangent vectors cosψ = 1. Therefore, by setting an angle ϕ1 the full range
of angles between the tangents −π ≤ ψ ≤ π can be generated. A set of offset curves
satisfying eqn. (3) gives a tube surface ρ2(s,ϕ1) with a radius R for a generatrix curve
ρ1, similar to the tube shown in Fig. 1. Any curve drawn on the tube surface will have
a constant distance R to the generatrix curve ρ1.

Contact algorithm for parallel beams – preferences

Several algorithms, in general, are applicable for beams: these are Curve-To-Curve
(CTC), Point-To-Curve (PTC) and Surface-To-Surface (STS) algorithms. However, the
fastest CTC algorithm is not capable to work in the case of parallel curves. A PTC
algorithm allows to avoid this problem, however, is not giving the answer about the
length of contact zone. Thus, the question about the “switch criteria” between CTC
and PTC algorithms is still remaining. In order to resolve this situation the Curve-To-
Solid Beam (CTSB) contact algorithm together with a solid beam finite element can be
proposed. The CTSB algorithm is geometrically developed as a sub-set of the Surface-
To-Surface (STS) algorithm in which the slave surface is taken as a cylinder with a
mid-line (non-deformable cross-section) while keeping the master surface fully inherited
from the solid beam finite element. This allows to employ all necessary weak forms
and their linearization from the already developed STS algorithm. The CTSB contact
requires a special algorithm to compute an initial point for the CPP procedure in order
to keep the uniqueness of the solution for the cyclic variable. The final computation
of the weak forms as well as the tangent matrices is given via higher order integration
with sub-domains. The last allows to analyze carefully the length of a contact zone for
the “problem of parallel tangents”. This problem in the case of contacting cylinders
can be validated from the classical Hertz contact theory, namely: the contact length
l is inversely proportional to the sine of the angle between the mid-lines l ∼ 1

| sinψ| .
This approach has a big potential for the mechanical cases including wire ropes, coils,
knots etc. as a combination of a finite element allowing an elliptical deformation of the
cross section from the continuum mechanics point of view and possessing a-priori the
existence and uniqueness of the solution even for the generally parallel curves case from
the contact kinematics point of view.
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1. LMT, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
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Summary: Mooring systems of o↵shore wind turbines have to be designed

to resist cyclic tension and bending. In order to take into account bending

for the computation of the fatigue damage, local phenomena of fretting

have to be properly predicted by means of a new numerical model.

Introduction

In the wind energy context, a recent development area aims to extend the wind site
possibilities by means of floating o↵shore wind turbines. These structures are basically
constituted by a wind turbine installed on a floater, which is linked to the sea bed by
means of mooring lines. The mooring system ensures the structure reliability by limiting
the floater movement.

We consider a case study of a semi-submersible floater equipped with a redundant moor-
ing system of six catenary mooring lines. These are constituted by spiral strands (Figure
1), whose design must consider extreme and fatigue loading, leading to combined ten-
sion and bending stresses induced by the floater movements for various wind and waves
conditions.

Figure 1: Spiral strand wire rope.

Wire rope behavior

During bending, relative movements among the wires take place, with consequent friction
due to tension. Results from free-bending fatigue tests show the importance of these
e↵ects, since the first rupture is localized in correspondence with the bending neutral
axis, where relative movements are larger [1].
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Proposed approach

A global analysis alone is not su�cient to characterize and quantify the local fretting
phenomenon. The proposed approach involves two scales: a macroscopic scale repre-
senting the global wind turbine system under simplified environmental loads and a local
scale which models the response of the cables at the wires level.

From the global model, implemented in an industrial software, DeeplinesTM, tension
and curvature distributions along the mooring lines are obtained.

The local model of the wire rope has been implemented in ABAQUS R�v6.14. It models
single wires with beam elements, in order to reduce the computational cost. Since a
wire rope is made by a great number of wires (121 in our case), it seems not a↵ordable
to model all of them in a single analysis. Alternatively, we propose to decompose the
local model into subparts, modeling just some wire layers at each time.

Contact modeling

Edge-to-edge, node-to-surface and surface-to-surface contact algorithms have been tested
and the results have been compared with the analytical predictions proposed in [2] and
[3]. In order to make use of the latter two, the idea has been to track the actual ex-
ternal surfaces of wires by linking shell elements to the beam nodes thanks to the use
of Abaqus Multi-Point Constraints in order to follow the beam deformation. Moreover
comparisons between small displacements and large sliding hypothesis have also been
performed.

Local model results

The aim of the local model is to link the global quantities, namely tension and rope
curvature, to local quantities that govern the fatigue damage at the wire level. In
particular, we are interested in computing accurately the axial strain in the wires, the
normal and tangential contact stresses and the relative movements among the wires. The
performances of each local model is shown through parametric studies which enlighten
the choice of the input parameters linked to contact modeling and mesh discretization
which allows to obtain reliable results.

Since the problem is highly nonlinear due to the presence of friction and possibly large
slidings between wires, loading/unloading behavior is studied.

The choice of the boundary conditions to prescribe on the local model is also carefully
investigated in order to avoid any edge e↵ect when coupling the two scale models.

The final objective of this work, once the fatigue law will be chosen, is to compute the
cable fatigue damage for each environmental state. By considering the probability of
occurence of each of these states, the fatigue damage would then have to be estimated
during the structural lifespan.
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Summary: Fretting fatigue life of a structural component under cylindrical 
contacts is here evaluated.  The critical plane-based multiaxial fatigue criterion 
by Carpinteri et al. is employed, and a novel procedure is proposed to 
determine the point where to perform the fatigue assessment.  

 

 

Abstract 

In the present paper, the fretting fatigue life assessment for a metallic structural component 
under cylindrical contact is performed by employing the critical plane-based multiaxial 
fatigue criterion proposed by Carpinteri and co-workers [1,2].  Firstly, the stress state related 
to such a fretting fatigue configuration is analytically evaluated in a closed form [3].  Then, 
the critical point, i.e. is the point where to perform the above assessment, is determined by 
alternatively moving along three different paths with the same length L/2 (which is a function 
of the material properties): a normal path, an inclined path, and a pseudo-isostatic path.  The 
structural components examined are 2024-T351 aluminium alloy dog bone specimens under 
cylindrical contact [4].  Since it is observed that by using the above path length L/2 the 
fretting fatigue life tends to be overestimated, a novel path length is herein proposed as a 
function of both the material properties and the stress gradient in the contact zone.  The 
results obtained are quite satisfactory, and the new path length seems to be promising not only 
for fretting fatigue but also for other fatigue configurations with high stress gradients.  
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Summary: The problem of propagation of longitudinal shock wave in an 
elastic rod interacting with the rigid medium is investigated using the model of 
viscous-elastic-plastic resistance on the lateral surface. An exact solution of 
the initial-boundary problem is obtained using the Laplace transform. The 
asymptotic for small departure from the dry friction is given. 

 
Introduction  
Analysis of energy dissipation due to the frictional interaction of deformable contacting 
bodies is of great importance in the research of applied problems of the structural dynamics. 
In this proceeding the nonstationary dynamics of an elastic rod with viscous-elastic-plastic 
external resistance has been studied. This problem can be used for modelling the dynamics of 
drilling equipment to eliminate the sticking of the tool, the process of the pulling of rods in 
building or the dynamical damage of fibers in the composite with inelastic matrix. The 
obtained results generalize the cases of purely dry friction [1, 2], purely viscous friction [3], 
contact through a viscous-plastic Bingham layer [4–6] and through a rigid-plastic layer with 
linear hardening (softening) [7, 8].  
 
Formulation of problem  
We consider the propagation of longitudinal shock wave in a semi-infinite elastic rod with 
constant cross section induced by sudden loading of the end. The classical theory of rods 
dynamics has been used. The friction forces on the lateral surface of the contact with rigid 
foundation are modeled by Voigt parallel connection of Saint-Venant’s, Newton’s and Hook’s 
rheological elements. We study the process of attenuation of shock waves due to action of this 
viscous-elastic-plastic resistance. 
The initial-boundary-value problem is the following: 
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Here u  is the axial displacement, xW  is the shear stress, LcTtLXx /,/    are dimensionless 
coordinate and time, 3 /FL  is the characteristic size, F  is the area and 3  is the perimeter 
of cross-section, U /Ec  is the wave velocity, E is Young’s modulus and U  is density of 
the rod material, )/( Lhcb llE , ll hEk /  are moduli of viscosity and hardening of the bed, 

сW , lE , lE  – are the threshold friction, dynamical viscosity and secant module of material of 
layer accordingly, lh  is its thickness, 0V  is the stress at the rod end and )(tH  is a Heaviside 
function. The primes and the dots denote the partial derivate with respect to the dimensionless 
coordinate and to the dimensionless time respectively.  

72



Results  
Divining the sign of the velocity, we linearize the nonlinear relations (2) and represent them 
in motion domain in the form  
 � �kuubxtHcx ���W� W �)( . (5) 

The equation (1) taking into account the expression (5) converts to telegraph equation with 
inhomogeneous right side:  
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where )/(/ UE  EhEbLB ll , )/(/ ll EhLEEkLK    are the dimensionless parameters of 
viscosity and hardening. 
The analytical solution of problem (6), (3) and (4) is constructed using the Laplace transform 
over the time coordinate and represend by Bessel’s functions. A wave pattern of perturbation 
including the prefront zone of rest, the area of motion and the domain of stationary residual 
stresses is built. 
The asymptotic expansion of results for small departure from the dry friction is obtained as a 
first approximation: 
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This expression is correct in domain of motion which bounded by characteristic and stop line:  
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A node based contact procedure with adaptive inserted contact nodes is
developed by making use of the Virtual Element Method and its advan-
tages. Large deformations and sliding are treated by a node adjustment
algorithm.

Introduction

The Virtual Element Method (VEM) is a generalization of the FEM for arbitrary shaped

Elements (see [1]). By choosing only one approximation function per degree of freedom

on each element the integration is carried out on the boundary and independent of the

number of nodes. To correct the approximation error made, a stabilizing part is added.

By using a special energy based stabilization [2] the Virtual Elements can be applied to

large deformational problems.

The method then can be used for arbitrary elements as in the direct use of Voronoi

meshes for computation. Additional it is also possible to change the element topology

during a computation by adding or removing nodes. This makes it possible to adjust a

contact surface discretization during the contact detection.

Contact Algorithm

The contact procedure using the VEM [3] o↵ers a flexible node-to-node formulation. It

is based on projecting and freely adding contact nodes to the original mesh to construct

matching contact surfaces with nodal contact pairs. This way di↵erences in mesh size

of contacting surfaces are overcome (see Figure 1).

Figure 1: Ironing problem using an arbitrary mesh with complex element shapes.
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Sliding Contact

In most classical contact computations nodes are projected on parametrized surfaces

where then contact constraints are enforced in tangential and normal direction to dif-

ferentiate between stick and slip state. As an alternative, contact can be computed

without respect to the contact normal by simple coupling of the nodes. The sliding case

is then considered afterwards by letting the projected node follow a friction cone de-

fined by normal and tangential tractions. This was applied to node-to-segment contact

discretizations in [4]. However these interpolations are dependent on the mesh size and

relation.

In combination with the moving cone description, the VEM contact now o↵ers a simple

formulation for surfaces in sliding contact. Contrary to classical node-to-node contact,

sliding movement is possible by adjusting the position of the contact nodes in the mesh

according to the friction state. Using the node-to-node contact a stable method was

formulated and the correct transmittance of contact forces is fulfilled.
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Summary: In this contribution, numerical simulation of ship collision will
be presented, where elasto-plastic behaviour of material along with mortar
based contact formulation will be considered. Furthermore, a gradient-
enhanced damage model for degradation of material will be considered.

With growth in tra�c of ships, the risk of collision is increasing. E↵orts are being
made to improve the crashworthiness of ships and one promising design approach is to
use granular materials in the cavity of double hull ships [1], where granulates are filled
between the hull of a ship. This strategy provides a medium between the hull which
can absorb impact energy and transfer the load to the inner hull. Consequently, impact
energy is shared between two hulls, in contrast to localized impact on outer hull only.

Numerical modelling of such a problem can be very challenging as it requires imple-
mentation of a robust contact model for the interaction of the ship with the colliding
body and a finite strain based elasto-plastic material model for describing the large de-
formation of the structure. Furthermore, a particle-based method is also required to
model granular materials. In this study, a mortar based method, as implemented in [2],
is used for the contact formulation which involves a segment-to-segment strategy with
weak enforcement of contact constraints. Such a weak coupling leads to a rather robust
formulation in case of large deformation and sliding. Regarding the material behaviour,
a finite strain based elasto-plastic model is considered, where a multiplicative split of
the deformation gradient is applied. Furthermore, material degradation of ship structure
during collision process cannot be neglected. In order to account for this phenomenon, a
gradient-enhanced damage model will be presented, by which pathological dependence
of finite element mesh during degradation will be avoided.

For numerical modelling of granular materials, the discrete element method (DEM) is
used where the analysis of particles is carried out at the micro-mechanical level. In this
study, expanded glass granular materials are considered, where the bulk and particle level
properties of such materials were studied in detail in [3, 4]. The DEM-FEM coupling, as
discussed in [5], is employed to study the load transfer between granular particles and the
confining structure. Finally, a homogenization technique for granular materials will be
presented, where macroscopic quantities are derived from volume averaged properties of
particles. Such a technique is helpful in the continuum based description of mechanical
properties of granular materials.
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Arbitrary Lagrangian Eulerian (ALE) framework for relative kinematic de-

scription of rolling bodies is well established because of its numerical e�-

ciency. However, this framework does not enable for circumferential discon-

tinuities, such as real tread pattern of tires. This research is aimed on the

development of a coupled Lagrangian-ALE solution strategy, which enables

the solution of the tread pattern contact with the road in a transient dy-

namic manner, whereas the underlying tire structure remains in stationary

ALE-description. The suitability of this approach will be demonstrated on

academic examples first.

Introduction

The Arbitrary Lagrangian Eulerian (ALE) description has been proven as a e�cient

relative kinematics description for the simulation of rolling bodies [1]. For detailed sim-

ulation of tires this approach has been extended for the e�cient treatment of frictional

contact and inelastic material behavior [2]. Later on it has been extended for thermo-

mechanical simulations [3]. Nonetheless, because material particles are moving on their

trajectories in the spatially fixed mesh, this approach is limited to axi-symmetric mod-

els. In order to model the contact of tires in detail, the description of the tread pattern

geometry and its transient dynamic contact with the road is needed. To avoid a com-

putational costly full transient dynamics simulation, a coupling strategy is suggested.

The tire body still remains in the e�cient stationary rolling ALE-formulation, which

the tread pattern is described in transient dynamics Lagrangian formulation. This pre-

sentation describes a coupling strategy which will be demonstrated on first 3D academic

examples.

Theoretical Developments

Both, transient dynamics contact and stationary modeling of rolling bodies are highly

developed, this presentation is devoted on the coupling strategy. The idea behind is to

place a coupling interface immediate between the tread strip and the carcass structure.

As the carcass is assumed to move stationary and the contact of the tread strip is

transient, this approach is based on the assumption that high frequent vibration induced

from the transient impact of tread block is rapidly damped out by the viscous rubber

material. This assumption is underlined by simulations with visco-elastic tread blocks

impacting the road. The general idea is sketched in figure 1 left. A second issue is

on the coupling interface between the ALE-structure and the Lagrangian parts. Here

the idea introduced first in [2] is picked up, where for the ALE-structure the movement

of the material particles is described by additional degrees of freedom in the coupling

interface, which enables for a robust, reliable and e�cient coupling strategy. A third

topic is on related temporal synchronized schemes for the coupling strategy. For that

a first suggestion is made based on Courant-criterion for advective motion, but further
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investigations are needed to figure out the optimal parameter settings with regard to

accuracy and numerical e�ciency.

Results

The coupling scheme has been implemented into a matlab based finite element code.

An early result is depicted in figure 1 (right), where the displacement field under rolling

conditions is shown. The inner (ALE) core is discretized with quadratic shape functions.

The (Lagrangian) treadblocks are discretized with linear shape functions. A smooth

transition of the displacement field between the coupled parts could be observed.

Figure 1: left) principle sketch of the Lagrangian - ALE coupling scheme for rolling

contact of treaded tires; right) on a simplified test structure computed displacement

field.
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Summary: The Lennard-Jones interaction model is used for Adhesive Con-

tact Problems (ACP). A sequence of partitions of contact models is adap-

tively constructed to both extend and approximate the LJ-problem. Weak

formulations of associated ACP are developed within the Arlequin frame-

work and solved numerically, in a macro-prediction and a micro-correction

steps, to track critical localized adhesive forces.

Introduction

Classical macroscopic contact problems neglect adhesive phenomena. However, in ap-
plications as the ones involving thermal and electrical resistance that are present in
many industrial applications like those involving design of MEMS and CNTs nanode-
vices, consideration of micro-attractive contact forces is essential. Analytical models
like the JKR, DMT and MD models, but also semi-numerical approaches like those in
the works by Muller and Greenwood, have been developed to take into account adhe-
sive forces. Though currently used, these models lack generality. They are basically
limited to particular geometries. Fully-numerical continuum-based approach for the so-
lution of adhesive contact problems have been more recently developed [1]. For more
references on this topic, we refer to a recent review [2]. Our research work is in this veine.

The goal of this work is to provide an extended and model-adaptive computational mul-
tiscale method which contributes to the enhancement of the reliability and e↵ectiveness
of the solution of adhesive contact problems, based on the surface Lennard-Jones model,
used in the continuum mechanics framework. Incidentally, by some of its aspects, our
approach is also appropriate for an e�cient solution of classical macroscopic contact
problems based on sti↵ normal contact relations of the form Rn = g(dn), where Rn and
dn refer to the contact force density and to the signed distance, respectively. This law
could have been identified experimentally. One could mention compliance laws, barrier
laws and so on.

Basic ideas

The basic ideas on which relies our methodology are the following:

• To address numerical shortcomings of a contact problem based on the surface
Lennard-Jones adhesive contact potential and by taking cue from previous ideas,
a sequence, checked to be convergent, of partitions of contact models constructed
to both extend and approximate the LJ model. This sequence is formed by a
combination of the LJ model with a sequence of shifted-Signorini (or, alterna-
tively, -Linearized-LJ) models, indexed by a shift parameter field (and not a scalar
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parameter). Our idea takes cue from previous works [3, 4] for the creation of a
partition of models using Shifted-Signorini contact models and [1, 5] for the Shifted
Linearized-LJ model.

• For each adhesive contact model of this sequence, a weak formulation of the as-
sociated local Adhesive Contact Problem (ACP) is developed. To track critical
localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic
contact problem (with no adhesive forces) is solved once to detect contact sep-
aration zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is
re-formulated and solved within the multiscale Arlequin framework, with signifi-
cant reduction of computational costs

Some numerical results

The contact between a sphere and two parallel infinite rigid surfaces is studied here.
The problem is assumed to be under axisymmetric conditions. Moreover, due to sym-
metries, only a quarter of the a median section is considered. One of our numerical
results obtained for this classical test is shown in Figure 1, corresponding to prescribed
indentation by the two planes. Other results will be shown during the conference. These
results are in a good agreement with other theoretical and numerical available results.

(a) (b)

Figure 1: Spherical indentation: (a) finite element global and local meshes in the unde-
formed configuration, (b) �yy component of the Cauchy stress tensor in the deformed
configuration.
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Summary: Frictional contacts in mechanical assemblies are often subject to 
cyclically varying loads, usually caused by vibration. In a gas turbine, dovetail 
joints will accumulate large numbers of vibration cycles during operation. 
Results of this study will help determining damping properties and assessing 
fretting damage for unsymmetrical contact interfaces of practical relevance.  

 
Introduction 
 

The idealised frictional contact of a tilted flat and rounded punch subject to a varying normal 
load is considered in this study, including effects of a shearing force insufficient to cause 
sliding. These give rise to slip and stick regions within the contact. The evolution of the stick-
slip pattern, together with frictional energy dissipation, is studied for a wide range of loading 
scenarios. 

The solutions are obtained assuming that the contacting bodies exhibit isotropic elastic 
behaviour and have similar mechanical properties and that both bodies can be modelled as half-
planes.  

Extending methods to unsymmetrical problems is necessary in order to broaden the 
understanding of the behaviour of dovetail roots of gas turbine fan blades. The flat and rounded 
punch, i.e. symmetrical case, has often been used to represent the dovetail flank contact. 
However, in the unsymmetrical case, contact pressure may be considerably higher at one of the 
contact edges compared to the respective edge in the symmetrical case. The severe stress 
concentration at the edge of the contact is extremely localised and a practical design 
consideration will therefore be whether these cycles can cause fretting fatigue cracks to initiate 
and propagate. 

In previous publications it has been demonstrated that the case of a general symmetric 
incomplete contact subject to complex loading cycles can be solved in closed form [1, 2]. 
Furthermore, frictional energy dissipation was the subject of investigation for symmetrical 
contacts [3]. Here, parts of this approach are applied to the unsymmetrical case with the 
intention to provide further understanding of realistic contacts as found in gas turbine 
applications. 

 
 
References 
 
[1] J.R. Barber, M. Davies, D.A. Hills, Frictional elastic contact with periodic loading, Journal 

of Solids and Structures, 48:2041 – 2047, 2011. 

[2] R. Ramesh, J.R. Barber, D.A. Hills, Plane incomplete contact problems subject to bulk 
stress with varying normal load, Int. Journal of Mechanical Sciences, 122:228–234, 2017. 

[3] M. Davies, J.R. Barber, D.A. Hills, Energy dissipation in a frictional incomplete contact 
with varying normal load, Journal of Mechanical Sciences, 55:13–21, 2012. 

87

mailto:hendrik.andresen@eng.ox.ac.uk
mailto:david.hills@eng.ox.ac.uk


Shear deformable beams in contact with an elastic half-plane
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Summary: The present work deals with the contact problem of a Timoshenko
beam  bonded  to  an  elastic  semi-infinite  substrate  under  different  loading
conditions.  The  analysis  allows  to  investigate  the  effects  induced  by  shear
compliance of the beam on the stress intensity factors at the beam edges as well

as the singular nature of the interfacial stresses.

Formulation of the Problem
Let to consider a shear deformable beam of length 2a with a cross section area A = 1∙h, in

contact with a homogeneous elastic half-space. The cover beam element is subjected to static
axial (N1, N2) and vertical (T1, T2) concentrated forces and couples (M1, M2) acting at the beam

edges, as reported in Figure 1 for the case of symmetric external concentrated loads.

Figure 1: a) Timoshenko beam bonded to an elastic half-plane subjected to external loads; b)
shear and peel stresses acting within the contact region.

Then, the strains at the lower side of the beam, for |x| < a, read to,

u 'b( x)=
N 1

E b A
+

1

Eb A
∫

x

a

τ( s)ds+
h

2 E b I
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∫
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s
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where E
b
=E

0
 or E

0 
/ (1-ν2

b
) denotes the Young modulus of the beam in plane stress or plain

strain conditions, respectively, ν
b
 is the Poisson ratio of the beam, I represents the moment of

inertia of the beam cross section, G
b
 is the shear modulus of the beam, whereas χ denotes the

dimensionless shear factor. In eq(1),  v
b
(x) represents the transverse deflection of the beam

along the y axis,  u
b
(x,y) is the axial displacement of the beam cross section at the interface,

i.e.  u
b
(x,y)|

y=0
, and  φp denotes a constant of integration (i.e. the rotation of the beam cross

section at x=0, positive if counterclockwise), to be determined.
The half-plane strains at the contact domain are known in closed form [2] as,
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being E
s 

and ν
s
 the Young modulus and the Poisson ratio of the half-plane, respectively, and

G
s
 = E

s
/2(1+ν

s
) its shear modulus. 

The strain compatibility conditions between the beam and the half-plane require:

System (3)  cannot  be  solved  in  closed  form.  However,  an  approximate  solution  can  be
straightforwardly found by expanding the unknown shear and peeling stresses in series of

orthogonal polynomials, namely [3]

being Pn(x) the Jacobi polynomial of order n and the index s of the polynomials denotes the

singular strength of the interfacial stresses at the end of the contact region, i.e. at x = ± a.  The
solution of system (3) is imposed at selected collocation points, thus founding the coefficients

Cn and Dn.

Results
As an example,  the shear and peel  stresses  of a Timoshenko beam under  axial  loads are

reported  in  Figure  2  for  some values  of  the  parameter  γ=E
s
χ/G

b
.  The  case  of  an Euler-

Bernoulli  beam  can  be  recovered  as  the  limiting  case  of  a  Timoshenko  beam  having  a
vanishing value of γ.  

Figure 2.  a)  Dimensionless interfacial  a)  shear and b)  peel  stress of a Timoshenko beam
subjected to two axial forces acting at the beam ends varying the parameter g.

Conclusion
The analysis of a Timoshenko beam in contact with an elastic half-plane under static loads has
been performed in the present work. The investigation allows to evaluate the effects induced by

the shear compliance of the beam on the behaviour of the beam-substrate system. The special
case of a membrane bonded to a half plane or a beam in frictionless contact with the underlying

support can be retrieved by imposing only the condition (3)1 or (3)2, respectively. The inversion
point (IP) position, i.e. the point where the peeling component inverts its sign, moves toward the

beam middle as the shear compliance increases and as the beam slenderness decreases.
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The tangential displacement field induced at the surface of a transversely
isotropic elastic half-space by a spherical indenter is evaluated.

Introduction

It was shown by Brown et al. [1], in their in vitro study on articular cartilage explants,
that the surface stretch of tissue due to axial loading is sensitive to early degenerative
changes in the tissue. The tangential displacement (stretch) at the tissue surface, both
under and surrounding a transparent (glass) indenter, was captured optically at the
grid points. The e↵ective surface stretch was introduced by normalizing the tangential
displacement against the indenter characteristic size (diameter). It has been also shown
[2] that the tangential displacements may be important in solving an inverse problem of
determining biomechanical parameters from indentation experiments. In this study, we
derive explicit formula for the surface stretch when the tested sample is represented by
an elastic half-space.

Elastic constant governing the surface stretch

It is known [3], that the radial tangential displacement at the surface of a transversely
isotropic elastic half-space under the action of a normal point force, applied at the origion
of coordinates, can be represented in the form

ur(r) = � ↵F

⇡M3r
. (1)

Making use of the known solutions [4, 5], for a transversely isotropic material, the
indentation modulus, M3, and the dimensionless elastic constant ↵ can be represented
by the formulas

M3 = 2↵(
p
A11A33 +A13), ↵ =

p
A44

q
(A11A33)1/2 �A13

p
A11

q
A13 + 2A44 + (A11A33)1/2

. (2)

Here, A11, A13, A33, and A44 are the material sti↵nesses of transversely isotropic mate-
rial. In the case of an isotropic material, we have

M3 =
E

1� ⌫2
, ↵ =

1� 2⌫

2(1� ⌫)
, (3)

where E and ⌫ are Young’s elastic modulus and Poisson’s ratio, respectively.
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Surface stretch under a spherical indenter

Making use of the known solution [6] of the contact problem in the case of the indenter
shape function �(r) = R�

p
R2 � r2, the following formula has been established:

ur(r) = � ↵
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p
a2 � r2

+

aZ

r

q
⇢2 � r2 ln

✓
R� ⇢

R+ ⇢

◆
d⇢

)

.

For the same ratio a/R, the surface stretch under a spherical indenter is somewhat lower
than that predicted in the framework of Hertz’s theory.
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A contact problem is considered for an indenter sliding on a viscoelastic base 
with the use of a phenomenological friction law obtained taking into account 
the conditions of interaction at microscale level. Contributions of both 
adhesion forces and hysteretic losses are taken into account. 

 
Introduction 
Adhesion forces associated with molecular attraction can have substantial influence 
on the characteristics of contact and friction between surfaces; their action manifests 
itself at quite fine, microscopic levels of interaction. At these scale levels, adhesion 
forces can lead to a significant increase in hysteretic losses in the surface layers of a 
viscoelastic material subjected to friction. The combined action of the imperfect 
elasticity of a material and the adhesion forces acting in the direction normal to the 
surface leads to the friction force acting in the tangential direction [1, 2].  

 
Figure 1: Scheme of contact at two scale levels. 
 
In this study, sliding contact is considered at two scale levels characterized by two 
scales of length. The first scale is associated with a characteristic size of the nominal 
contact area Ra and the second one with characteristic distance between asperities la 
(Fig. 1). The shear stress in the contact zone is specified as a function of the pressure, 
velocity, and parameters of surface microgeometry (phenomenological law of 
friction) The phenomenological friction law thus constructed can be used not only for 
the formulation and solution of contact problems for viscoelastic materials, but also 
for the description of experimental results and comparison to results obtained with 
other available models. 
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Contact problem at macrolevel 
The contact problem is considered for an indenter sliding on a viscoelastic base in the 
presence of shear stresses acting in the contact zone and adhesion forces acting 
outside the contact zone. Unlike the classical Amonton-Coulomb friction law, this 
relationship will contain, as parameters, characteristics of micro-roughness of the 
indenter surface and adhesion properties of the interacting bodies. As a result of the 
contact problem solution, a model of friction is constructed, which takes into account 
the contribution of hysteretic losses into the overall friction force at both macro- and 
micro-levels. The model allows one to explain how the adhesion forces acting in the 
direction normal to the surface contribute into the macroscopic friction force acing in 
the direction tangential to the surface. The contact characteristics at macrolevel – 
nominal pressure distribution, size and position of the nominal contact area – are 
calculated and analyzed depending on the parameters of micro-roughness and 
adhesion properties of surfaces. The overall value of the friction force is also studied 
as a function of input parameters of the problem, including geometric characteristics 
of the indenter at micro- and macro-scales, load, and sliding velocity. 
 
Friction law at microlevel 
The friction law at microlevel is constructed by following steps: 
- an average shear stress at microlevel is calculated on the basis of the contact 
problem solution for a rough surface sliding on a viscoelastic base in the presence of 
adhesion forces acting outside real contact areas in the direction normal to the surface. 
In formulation of the contact problem, only normal forces of attraction and repulsion 
between the surfaces are taken into account; as a result the tangential force (friction 
force) is calculated, which arises in contact due to hysteretic losses occurring in 
cycling deformation of the viscoelastic material by sliding asperities of the rough 
counterbody.  
- the tangential force is analyzed depending on the roughness parameters (size and 
shape of asperities, their density), surface energy of the viscoelastic material, its 
mechanical properties, sliding velocity, and external normal load.  
- a friction law is constructed relating normal stresses acting in the contact zone to 
tangential ones. 
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Partial elastic contact of nonsinusoidal wavy surfaces  
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Summary: The normal contact problem for a rigid nonsinusoidal wavy 
surface, indenting into elastic half-plane is studied analytically. The close-
form solution for a wavy profile, represented as cosine series is obtained. The 
approach is implemented for the case of a two-scale wavy profile. The results 
show oscillating character of contact characteristics.   

 
Introduction 
Regular (periodic) surface relief is often observed on some machined (e.g. on turned or 
milled) and natural surfaces. Also it is created on a surface for achievement of specified 
physical characteristics. As a first approximation the relief can be modeled as a cosine profile. 
Contact problems for a cosine wavy surface are intensively studied [1-3]. As contact 
characteristics are much sensitive to surface geometry, the contact problems for nonsinusoidal 
wavy surfaces, including multiscale profiles (e.g. Weierstrass profile) are of interest. For plane 
contact problems the analytical approaches can be applied with appropriate assumptions. The 
close-form solution of plane contact problem was found in [4] for parametric wavy profile, 
different from the sinusoidal one. Here the more general approach is considered, assuming 
wavy profile as a cosine trigonometric series.  
Assumptions and general equations 
The wavy profile is a part of a rigid body and it has an amplitude much smaller than period.    
The half-plane is a linear elastic isotropic material with two elastic constants - Young's 
modulus E, and Poisson's ratio µ (plain strain state). Only symmetrical wavy profiles, 
described by twice differentiable functions are considered. Friction is negligible. The main 
integral equation of periodic contact problem is [1-3] 

,   (1) 

where x is a linear coordinate; hx(x) is a derivative of a gap function; a is a contact half-length; 
p(x) is a contact pressure. With use of variable transform [4] equation (1) is transformed to 
Cauchy integral equation, which solution is known [1, 2]: 

,     (2) 

where u = tan ξ/2; = tan ξ/2 ; α = tan a/2. For unknown contact length 2a the equlibrium 
equation is used to complete the system [3]. 
Problem statement and method of solution 
Assume that wavy profile is represented by cosine series: 

,   (3) 

where N is a number of wavelengths; ΔN is an aplitude of N’th harmonic (Δi < Δi-1, Δi  ); 
λ1 is a largest wavelength of a profile; ni = λ1/ λi (ni > ni-1; ni ).    
Then derivative of a gap function for a i’th harmonic can be represented after change of 
variables in terms of Chebyshev polynomials of the first kind (period λ = 2π was chosen for 
simplicity): 
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,     (4) 

where Un – is a Chebyshev polynomial of a second kind with degree ni. 
The solution for the contact pressure for i’th harmonic can be obtained using expansion of 
equation (4) into Chebyshev polynomials of the first kind and its integral relations with 
Cauchy singular integral. 

 ,  (5) 

where  

,  j =  1, 2, …;    (6) 

.   (7) 

The total pressure distribution p(x) is given by the sum of distributions for separate harmonics 
pi(x). The dependences for displacements, average pressure and internal stresses can be 
obtained using relations for plane contact problems [1, 2].  
Contact characteristics analysis 
The graphs of dimensionless nominal (average) pressure   and maximum 
pressure ; p* = −πΔ1E/(λ1(1−ν2)) versus contact length 2a/λ1 for wavy 
surface with two wavelengths, having Δ1 = 1 mm; Δ2 = 0.025 mm; λ1 = 10 mm;  
n = λ1/ λ2  are presented on a figure 1.           

 

  (a) (b) 
Figure 1: Dimensionless contact pressure versus contact length at different n in comparison 
with single cosine profile (dash-dot line): (a) nominal pressure, (b) maximum pressure. 
The results illustrate, that nominal and maximum pressures have oscillations, correspondent 
to second harmonics of profile, which influence the stress-strain state of the contact stronger 
than contact area dependence.   
The research was supported by RSF (project No. 14-29-00198). 
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Summary: We present an error analysis of Nitsche’s method for contact
problems. By reinterpretation of the method as a stabilised mixed method,
we derive optimal a priori and a posteriori estimates.

Introduction

The method of Nitsche [1] has been shown to be a very successful method for approxi-
mating contact problems, cf. the recent survey [2]. The mathematical analysis presented
has, however, not been entirely satisfactory. For the a priori error analysis the assump-
tion that the solution is in the Sobolev space H

s, with s > 3/2, has been needed. The
a posteriori analysis has been made under a non-rigorous saturation assumption.

The new error analysis

In our paper [3] we made the observation that there is a close connection with Nitsche’s
method and a stabilised mixed finite element method, and we advocated the use of the
former since it has the advantage that it directly yields a method with an optimally
conditioned, symmetric, and positively sti↵ness matrix. The error analysis is also very
straight-forward (but, as mentioned, not optimal).

In our work we readress the error analysis of Nitsche’s method. In an earlier paper [4]
we developed a framework for analysing stabilised mixed finite element methods for the
model membrane problem. This we now apply for the linear elastic contact problem. We
first reformulate the method as a variational inequality in mixed form with the contact
force as a Lagrange multiplier. For this we prove the stability, with the right noms,
for both the continuous and discrete problem. The continuous stability yields the a
posteriori estimates, whereas the a priori is a consequence of the stability of the discrete
problem.
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Summary: We describe an efficient method of simulation of adhesive contacts 
of arbitrary complex shapes in the half-space approximation and under 
assumption of short range adhesive interactions (JKR limit). We used the 
mesh-dependent detachment criterion introduced 2015 by Pohrt and Popov. 
Validation is provided by comparison with known analytical solutions and 
experiments. 

 
Introduction 
In the last ten years, the FFT-based Boundary Element Method has taken the position of the 
most efficient numerical technique for simulation of contacts of bodies having complex 
shapes (as e.g. contacts of fractally rough surfaces.) However, it took another several years to 
generalize this technique to adhesive contacts. The first such formulation of “adhesive BEM” 
was suggested 2015 by Pohrt and Popov [1] and was followed in a rapid sequence 2016 by a 
very similar work [2] as well as 2017 by another formulation based on the energetic balance 
[3]. All above works assume infinitely small range of action of adhesive forces (which 
corresponds to the JKR-approximation of adhesion theory, [4]. The method formulated in [1] 
was tested and applied to a large variety of different types of shapes in [5] and was 
generalized to contacts of functionally gradient materials in [6].  
The main idea of the detachment criteria is very simple: It is just the direct application of the 
energy balance principle first used by Griffith for describing propagation of cracks [7]: It is 
assumed that a computational element detaches if the elastic energy released du to detachment 
is equal to the work of adhesion of the element. Surprisingly, this simple principle occurs to 
be extremely robust and efficient and leads to a numerical method which is completely 
tolerant to the shape of the contact boundary or the orientation of the computational net [5].  
Simulation 
In Figure 1 and Figure 2, an example of sequences of contact configuration and the 
corresponding force-distance dependency are shown for the adhesive contact of a flat, oddly 
shaped 2D cylinder. The configurations are obtained by boundary-elements-simulation 
according to [1]. Normalization of the pull off-distance d  is 

 dimless *
12

d
d

L E
=

γ
, (1) 

where d [mm] is measured from neutral position (surface stresses vanish), L  is the edge 
length of the square computational domain [mm], 12γ  is the separation energy of the two 
surfaces [N/mm] and *E [N/mm2] is the reduced modulus of elasticity, obtained from the two 
bodies’ elastic moduli E  and poisons ratios ν  of contacting bodies: 
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The adhesive Force F [N] is normalized as follows 
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Figure 1: Consecutive phases of detachment of a flat-ended stamp in form of “Yin and Yang”. 
The last shown configuration is the last stable configuration. After that, the stamp 
instantaneously detaches completely. 

 
Figure 2: Dependence of the normalized normal force on the normalized distance. 
In the presentation, a large variety of indenter shapes will be discussed, [8]. 
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The discontinuous Galerkin (DG) method is used to investigate the dy-

namics of (damaged) materials with micro-cracks in frictional unilateral

contact. The explicit leapfrog scheme is used for the time discretization

while the nonlinear conditions on the micro-cracks are treated by using a

specific flux choice and an augmented Lagrangian technique.

Introduction

The derivation of accurate relationships between the micro-structure (pores, micro-
cracks) and overall elastic properties of brittle materials (rocks, ceramics,..) is an on-
going problem in material science, geophysics, and solid mechanics. The large majority
of numerical schemes that treat the wave propagation in materials with micro-fractures
are using the finite-di↵erence method. Some of them take the cracks as secondary point
sources and others use penny-shaped weak inclusions to model the micro-cracks. In
contrast, for the ”explicit interface” approaches the fracture is assumed to have a van-
ishing width across which tractions are continuous, but displacements and velocities are
allowed to have jumps.

The aim of this paper is to use the discontinuous Galerkin (DG) method to investigate
the dynamics of (damaged) materials with a nonlinear micro-structure (micro-cracks in
frictional contact). In the classical finite element technique, inner boundary conditions
require a geometrical treatment, hence the computational e↵ort became very important
for a large number of micro-cracks. In contrast, in the DG method the inner boundary
conditions are modeled by the flux choice without any additional computational cost
even for many micro-cracks.

Numerical Approach

The general framework of the numerical scheme used here is based on the second order
numerical scheme proposed by Etienne et al. [1]: the explicit leapfrog scheme in time
and a centered flux choice for the inner element faces. The nonlinear conditions on
the micro-cracks will be treated as special flux choices, while the resulting nonlinear
equations at each time step are solved by using an augmented Lagrangian technique.

Testing the numerical schemes

In order to test the algorithms, we considered two in-plane problems for which we can
construct an exact solution. In both problems, we have compared the results of our
numerical schemes with the analytical solutions. For the frictionless unilateral contact
problem the Uzawa and compliance methods give accurate results. Generally, the Uzawa
scheme is more accurate but it requires a higher computational cost. For frictional
contact we remark a very good approximation illustrating the accuracy of the proposed
numerical scheme.
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E↵ective wave velocity

This technique was used to compare the e↵ective wave velocity in a damaged material
obtained by direct DG computation and by the analytical formula, deduced form the
e↵ective elasticity of a cracked solid theory (NIC, DS and SCS approaches). Even if
the stress field loses its homogeneity (unloading zones around the micro cracks and high
stress concentration on the crack tips, compressive waves that propagates in the opposite
direction, etc) the pulse has an over-all front wave at each moment. This is an important
point which allowed us to compute the over-all wave speed. We found that, the over-all
wave speed is slower than the theoretical speed and the di↵erence is very important for
large values of the crack density parameter. If the wave length is of order of the crack
length, the speed wave is strongly dependent on wavelength, but for a large wavelength
the speed wave depends only on the crack density parameter.

Blast impact on a cracked material

The aim of this chapter is to illustrate how the DG method can be used to investigate
more complex wave propagation phenomena. We have analyzed the wave generated by
a blast in a cracked material (81 vertical, horizontal or inclined frictional or frictionless
micro-cracks). We found that the cracks’ orientation a↵ects the wave propagation and
their scattering. The friction phenomena between the faces of the micro-cracks are
a↵ecting the wave propagation only for the mode II behavior but if the waves activate
principally the mode I, the role played by the friction is negligible.

Figure 1: Micro-cracks oriented at � = �/4. Comparison between the propagation of
the blast wave in a cracked material with friction (left) and an undamaged one (right).
Four snapshots of the stress deviator (color scale in Pa) at t = 0.5T, 0.7T, 0.8T and t =
0.9T.

(a)

Figure 1: Micro-cracks oriented at ✓ = ⇡/4. Comparison between the propagation of the
blast wave in a cracked material with friction (left) and an undamaged one (right). Four
snapshots of the stress deviator (color scale in Pa) at t = 0.5T, 0.7T, 0.8T and t = 0.9T .
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Summary: This contribution considers the issue of the shakedown of cou-

pled contacts with frictional interfaces and elastic-plastic material. Our

purpose is to show the e↵ect of plasticity on the contact sensitivity to ini-

tial conditions. We adopted a metric to measure the degree of coupling of

the system, due both to a material mismatch and a domain mismatch. We

used an e�cient optimisation algorithm to compute the upper shakedown

limit, and performed a series of analyses to assess the e↵ect of di↵erent

initial conditions on the system response.

Introduction

Frictional shakedown has attracted the attention of researchers, as it shares a strong

analogy to the phenomenon first observed in the theory of plasticity. However, due to the

fact that the most common frictional laws, such as Coulomb’s, are pressure-dependent,

the flow rule is generally non-associated, and limit analyses theorems do not hold, save

some particular cases. Specifically, these occur when the contact is uncoupled, that is,

the normal pressure is not a↵ected by frictional slips [1, 2]. When coupling is present, the

system response depends on the initial conditions, and the well-known Melan theorem

provides a necessary but no longer su�cient condition for the shakedown. In such a case,

there is a conditional region, delimited by a lower bound below which the shakedown is

guaranteed, and an upper bound, above which the shakedown is impossible [3]. Flicek

et al. [4, 5] studied the response of coupled and uncoupled contacts and investigated

the contact sensitivity to initial conditions, in the case of an elastic material. When

plastic zones develop in an uncoupled system, it has been noticed that they might help

to discourage frictional slip, possibly being beneficial to the shakedown [6].

The purpose of the present contribution is to get an insight into the e↵ects of plasticity

on the frictional shakedown of coupled systems. Specifically, we try to answer to a

series of questions: how does coupling a↵ect the shakedown when plastic zones develop

in the material? What is the e↵ect of the plastic zones on the size of the conditional

region, that is, do they increase or shrink its size? All the calculations are applied to a

simple model, consisting of a thin plate containing a frictional crack, which enables us

to explore several sources of system coupling.

Formulation

Shakedown in elastic-plastic systems with friction

In an elastic-plastic system with frictional contact interfaces, the shakedown condition

occurs (i) when no plastic flow occurs and (ii) when each point along the contact remains

in a state of stick. According to the theorem formulated in [2], the necessary condition
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for the shakedown is the existence of a safe residual state such that both the yield

condition in the stress space and the slip condition in the space of the contact forces are

satisfied at any time instant. The residual contact forces are comprised of two terms,

one depending directly on the frictional slips w and the other being a consequence of

the plastic strains p. In a discrete formulation, we may write such forces as:

rR = rR(w) + rR(p) = w+ Ap (1)

where  is a symmetric contact sti↵ness matrix and A is a rectangular matrix. It is

evident that the e↵ect of the plastic strains is to add extra slips along the interface.

Coupled systems

In general, coupling can be ascribed either to a material mismatch or a domain mis-

match. The former occurs in the situations where the contact interface separates two

materials with di↵erent properties, while the latter results from the two bodies being

of a di↵erent shape. Both types are considered separately in our study. The degree of

coupling is quantified adopting the same metric used in Flicek et al. [5]. From a matrix

partition, we can highlight the normal-tangential component accounting for coupling,

and thus define the following ratios:

⇠w =
ktnk
kttk

, ⇠p =
k(A)tnk
k(A)ttk

(2)

where t and n denote the tangential and normal directions on the contact, respectively.

Shakedown conditional region

The shakedown conditional region is comprised between the two limits defined above:

a lower limit �1, and an upper limit, �2. This is the same notation used in the paper

by Ahn et al. [3], although here the shakedown with respect to the plastic strains is

also considered. In our work, the shakedown limit �2 is computed with a constrained

optimization, using an algorithm that includes both the frictional constraint on the

contact interfaces and the yield constraint in the material [6]. As no e�cient algorithm

is available for the computation of �1, we explore the e↵ect of the initial conditions by

running a series of incremental analyses, in order to show that the coupled system may

not shake down, even if the applied loads are lower than the limit �2. In this way, a

rough assessment of the size of the conditional region is obtained.
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Frictional, elasto-plastic multi-body contact problems play an important role in mechanical 
engineering. The nonlinearities caused by geometric contact and frictional constraints combined 
with the nonlinearity in the material law result in challenging numerical problems in forms of 
variational inequalities and therefore efficient solving methods are needed. This presentation will 
deal with so called Nitsche’s methods. The Nitsche method originally proposed in aims at treating 
the boundary or interface conditions in a weak sense, according to the Neumann boundary operator 
associated to the partial differential equation and in a consistent formulation. It differs in this aspect 
from standard penalization techniques which are generally non-consistent. Moreover, no additional 
unknown (Lagrange multiplier) is needed and no discrete inf–sup condition must be fulfilled, 
contrarily to mixed methods. A first application to contact mechanics was presented in [1] and a 
mathematical analysis for linearized kinematics has been published in [2], [3]. Unlike any other 
method, Nitsche’s method is at the same time variationally consistent and therefore optimally 
convergent. Additionally, more advanced variants require an adjoint term including the stresses 
computed from the test function to obtain, depending on a parameter, either a symmetric variant or 
a skew symmetric variant, which is stable for any positive penalty parameter see [4].  !
Very recently, we start to use Nitsche’s method to elasto-plastic contact problems (with Von Misès 
flow rule). In this note, we describe the use of Nitsche’s method to prescribe a contact (with or 
without Coulomb friction condition) between two elasto-plastic bodies in the small deformations 
framework. This corresponds to a weak integral contact condition which as some similarity with the 
ones which use Lagrange multipliers. The here proposed approximation strategy has been 
implemented in the open-source finite element library GetFEM++ [6] for small and large elastic or 
hyperelastic [5] contact with or without friction, and now extended to plastic behavior. !
Some numerical examples, such as the elasto-plastic Hertz contact in Figure 1, will demonstrate the 
efficiency and accuracy of the presented extensions to Nitsche’s method for contact problems. 

!
!
!
!
!
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Figure 1 :  3D numerical Hertz contact with contour plot of Von Mises stress. 
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Summary: We present an FE membrane formulation for solid-solid and

solid-liquid thermo-mechanical contact. Mechanical contact with and with-

out friction on surfaces and on lines is considered as well as thermal surface

contact. The capability of the formulation is illustrated by several challeng-

ing numerical examples.

Introduction

A geometrically exact FE membrane formulation that is suitable for solids and liquids

is presented in [1, 2]. The formulation accounts for enclosed volume, surface area and

mechanical contact constraints. It is based on curvilinear coordinates and applicable

to classical Lagrangian interpolation, as well as to isogeometric interpolation of higher

continuity. This results in a general, robust and e�cient contact formulation that avoids

the use of local Cartesian coordinate systems and the transformation of derivatives.

Mechanical contact

At the contact surface the usual impenetrability constraint

gn > 0 (1)

in normal direction is observed for both solid and liquid membranes. For solid-solid

contact, tangential contact forces can also be enforced at the contact surface. In the

case of frictional surface contact, the distinction between sticking and sliding is based

on the slip criterion

fs

(
< 0 sticking ,

= 0 sliding .
(2)

During sticking, the contact traction is defined by the sticking constraint

g↵t = 0 ↵ = 1, 2, (3)

while it is characterized by a constitutive law during sliding. During solid-liquid contact,

sharp contact angles can be formed at the contact line. Under hydrostatic conditions,

tangential contact forces are only transferred at this line. In the case of frictionless line

contact (constant contact angle), the contact conditions along the contact line can be

enforced by simply applying a line load. In the case of frictional line contact (varying

contact angle), three states can be distinguished: contact line pinning, contact line

advancing and contact line receding. The three states are characterized by the sticking

constraint (3) together with the contact angle range

✓r  ✓c  ✓a, (4)

where ✓a and ✓r are the limit values during advancing and receding [3].

A large range of applications is captured by the given formulation. These include
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(a) (b)

Figure 1: (a) contact between a liquid sheet and a rigid asperity for varying contact

angles [2], (b) inflation of a rubber membrane in a bounded cavity: contact pressure

balloon-cushion contact, droplet-substrate contact, droplet-droplet contact, droplet pin-

ning, droplet sliding and cavity wetting among others [1–3]. Moreover, the membrane

formulation is coupled with volumetric FE analysis [4] or alternatively with boundary

element analysis [5] to consider the fluid flow within the enclosed media.

Thermal contact

The presented membrane formulation is also suitable to model thermal contact between

two bodies. The heat flux across an interface is defined by means of its heat transfer

coe�cient htc
qc = qc · n = htc �T. (5)

The value of htc strongly depends on the mechanical contact state of the interacting

bodies. For single-scale contact problems, it can directly be determined from

htc =

(
1 ! �T = 0 mech. contact ,

0 no mech. contact .
(6)

For multi-scale contact problems, the local htc is determined from the macroscopic con-

tact state and the microscopic surface geometry. Coupling mechanical and thermal

contact results in a formulation that accounts for thermo-mechanical contact at inter-

faces. Thermo-mechanical contact plays a major role in many industrial applications

like injection molding or additive manufacturing.

Acknowledgement

Financial support of DFG through GSC 111 and SFB 1120 is gratefully acknowledged.

References

[1] R.A. Sauer, T.X. Duong and C.J. Corbett, A computational formulation for constrained

solid and liquid membranes considering isogeometric finite elements,

Comput. Methods. Appl. Mech. Eng, 271:48–68, 2014.

[2] R.A. Sauer, Stabilized finite element formulations for liquid membranes and their application

to droplet contact, Int. J. Numer. Meth. Fluids, 75:519–545, 2014.

[3] R.A. Sauer, A frictional sliding algorithm for liquid droplets,

Comput. Mech., 58:937–956, 2016.

[4] R.A. Sauer and T. Luginsland, A monolithic fluid-structure interaction formulation for solid

and liquid membranes including free-surface contact, arXiv : 1710.02128, 2017.

[5] M. Harmel and R.A. Sauer, Boundary element and finite analysis for the e�cient simulation

of fluid-structure interaction and its application to mold filling processes PAMM, in press

112



Numerical Approaches to dry and lubricated contact mechanics 
between linearly viscoelastic rough solids 

 
C. Putignano, G. Carbone 

 
Politecnico di Bari, Viale Japigia 182, Bari, Italy, 

 
In this work, we review a variety of numerical methodologies that we have 
developed in the last years to deal with the contact mechanics between linearly 
viscoelastic solids. Precisely, we have focused on the development of Boundary 
Element approaches, where the surface displacements and the pressure 
distribution have been related by means of integral equations. In the case of 
lubricated condition, the solid problem has been coupled with the Reynolds 
equations, which have been numerically solved by employing a finite difference 
scheme.  

 
Soft matter mechanics has an intrinsically high level of complexity: this is due to the strongly time-
dependent and usually nonlinear constitutive stress-strain relations governing its response. Further 
intricacy is added when soft bodies are brought into contact and the problem is exacerbated by the 
geometry of the intimately mating surfaces. Over the past two decades, the continuously growing 
technological relevance of engineering applications, involving polymeric materials is requiring specific 
efforts to shed light on these issues. Indeed, the smart design of engineering elements, like e.g. tires, 
seals, dampers, is a key point in current applied mechanics research: a more efficient design of 
automotive tires or an improved sealing action for mechanical seals could have a prominent impact in 
everyday life by providing significant energy savings and improved wear resistance. However, these 
optimization efforts strictly require an accurate comprehension of the viscoelastic properties of 
mechanical problems. 

 
Figure 1: schematic of the problem studied in the lubricated case. A rigid sphere rolls over a linearly 

viscoelastic layer.   
 
We have developed a variety of methodologies aimed at implementing a rigorous mathematical 
characterisation of soft contact mechanics, i.e. the interactions of the “soft body” with its environment. 
Specific efforts have been addressed to understand how the surface roughness, whose spectrum covers 
several orders of magnitude, and the material mechanical properties influence the contact in terms of 
stresses, strains and, ultimately, friction. Particular attention has been paid to deal with viscoelastic 
materials, which exacerbate the problem complexity due to the time-dependant behaviour: Boundary 
Elements models to simulate both steady-state and reciprocating conditions have been introduced and 
are capable of predicting interfacial strains, stresses and dissipation  [1-3]. Recently, a new methodology, 
coupling the BE solid solver and a Finite Difference scheme, has been introduced to include interfacial 
lubrication [4-6] (see Figure 1).  
 
Results reported in Figure 2 show how the contact solution in the case of viscoelastic contacts differs 
from the classic elasto-hydrodynamic solution.  
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Figure 2: Contour plots of the film thickness (left) and the pressure distribution (right) for different 

values of the dimensionless speed.   
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Summary: In this work we present numerical simulations of fluid and gran-
ular lubrication between hierarchical surfaces. We show how surface pat-
terns can be precisely engineered to control the macroscopic tribological
properties of lubricated contacts.

Introduction

The precise control of friction coe�cients can be of extreme interest in many engineering
applications. Recent studies have demonstrated that by realizing surfaces with 2D or 3D
textures, it is possible to modify the frictional properties of both dry [1] and lubricated
[2] contacts. Similarly, hierarchical surface structures [3] and functionally graded ma-
terials [4] observed in Nature have stimulated the development of artificial bio-inspired
solutions, with outstanding frictional and adhesive properties.
Here we extend the concept of surface hierarchy to fluid and granular lubrication prob-
lems, providing useful insights for the design of smart tribo-materials and innovative
solutions for lubricated contacts.

Hydrodynamic lubrication

We consider the case of a plane slider bearing [5], whose geometry is modified with a
patterned profile presenting several hierarchical levels. By employing finite-volume Com-
putational Fluid Dynamics simulations, we show the dependence of the load-carrying
capacity and the frictional force on the surface structure. The results are also compared
with the approximate solution given by the Reynolds’ equation.
One of the main findings is that it is possible to tune the macroscopic coe�cient of fric-
ton of the bearing in order to minimize or maximize the frictional force. In addition, the
precise design of the surface patterns can be used to control the emergence of cavitation,
which can heavily a↵ect the performance of the bearing (see, e.g., Ref. [6]).

Granular lubrication

In recent years, textured surfaces have been used also in presence of solid (or granu-
lar) lubricants, with the main objective of reducing wear and thus increasing the life of
tribo-contacts [7–9]. The granular lubrication is investigated by means of the Discrete
Element Method [10], considering visco-elastic particles confined between rigid surfaces.
We find the general trend that surface patterns and hierarchies reduce the global coef-
ficient of friction. However, the complex microscale (i.e. particle-particle) interactions,
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as well as the particle size distribution and the presence of cohesive forces, can also have
a significant e↵ect on the frictional response of the system.
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Summary: We studied the mechanical and hydrological behavior of contact
interfaces with trapped fluid in 2D and 3D and elaborated a monolithic
finite-element scheme for this problem. We report the reduction of friction
under increasing load, emergence of stress singularities at contact edges
and higher interface transmissivity due to fluid entrapment.

Introduction

Natural and industrial surfaces always possess roughness under certain magnification,

and the contact between solid bodies occurs on separate patches corresponding to asper-

ities of contacting surfaces. Lubrication is an e�cient mechanism for friction and wear

reduction, however, if the applied external load is high enough or if sliding velocities are

small, asperities of both surfaces get in direct contact. At the same time, the lubricat-

ing fluid may be trapped in valleys surrounded by contact patches [see Fig. 1(a)], which

has a strong e↵ect on the contact properties. The trapped fluid opposes the growth of

the real contact area, while the applied external load is shared between the contacting

asperities and the pressurized fluid, which provides an additional load-carrying capacity.

As a result, the global coe�cient of friction is decreasing with the increasing external

load. Moreover, under high load the trapped fluid escapes the trap, which leads to the

depletion of the contact area and thus to a further reduction of the frictional resistance.

The e↵ect of lubricant entrapment is important in such engineering applications, as

cold metal forming and rolling, in biological sciences (reduction of friction between

cartilage surfaces in human joints) and in geophysical studies, for modeling basal sliding

of glaciers and landslides, caused by an elevation of the fluid pressure in pores inside the

rock. Moreover, the fluid entrapment is of importance for static sealing applications.

First, we studied the contact problem between a solid with a regular wavy surface and

a rigid flat, taking into account fluid trapped in the interface. Second, we addressed the

sealing problem, i.e. thin fluid flow through the rough contact interface under increasing

external load, and investigated the e↵ect of the fluid entrapment.

Trapped fluid in a contact interface with a regular waviness

We studied in detail the mechanical contact between a deformable body with a wavy

surface and a rigid flat taking into account pressurized fluid trapped in the interface,

see Fig. 1(b), in plane strain formulation. A finite element model was developed for a

general problem of trapped fluid for frictionless and frictional contact, compressible and

incompressible fluid models, elastic and elasto-plastic material models, see [1].

We showed that in case of incompressible fluid, the real contact area and the global

coe�cient of friction decrease monotonically with the increasing external pressure. Ulti-

mately the contact opens and the fluid occupies the entire interface resulting in vanishing
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Figure 1: (a) Morphology of the contact interface between two elastic half-spaces with

rough surfaces: black shows the real contact area, white is out of contact, red highlights

the “trapped” area, delimited by non-simply connected contact patches. (b) Sketch of

the trapped fluid problem in 2D formulation.

of static friction. In case of compressible fluid with pressure-dependent bulk modulus,

we demonstrated a non-monotonous behavior of the global coe�cient of friction due to a

competition between non-linear evolution of the contact area and that of the fluid pres-

sure. In case of elastic-perfectly plastic materials, we also observed fluid permeation into

the contact interface, which results in a drop of the global coe�cient of friction. Finally,

we discovered the emergence of singularity-like peaks in the frictional tractions near the

contact edges, accommodating the surface shear stress redistribution resulting from the

reduction of the contact area. We proposed an approximate analytical formulation of

this process based on the similarity with the interfacial crack propagation mechanism.

We generalized the trapped fluid problem to consider 3D contact interface between a

bi-sinusoidal surface and rigid flat, filled with fluid. The evolution of the shape of the

trapped zone under the increasing external load was also investigated.

Influence of the fluid entrapment on the interfacial fluid flow

The evolution of the real contact area and free volume distribution under increasing

external load determines such contact properties as friction, wear, adhesion, but also

controls heat and mass transport in and through contact interfaces. Here we investigated

the influence of fluid entrapment on the properties of realistic contact interfaces. We

solved the problem of thin creeping fluid flow through the free volume formed by a solid

with a representative surface roughness brought in contact with a rigid flat, see Fig. 1(a).

We developed an original monolithic approach for strong coupling of the mechanical

contact with interfacial fluid flow [2], enabled automatic detection of non-simply con-

nected contact patches and introduced the behavior of the pressurized fluid trapped in

these zones into the finite-element framework. We showed that under high loads the

account for the trapped fluid results in a significantly higher transmissivity of the rough

contact interface than simpler models, which neglect the e↵ect of hydrostatic pressure

on deformation of the solid, especially close to the percolation limit.
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Random response of a sliding block with Coulomb friction 
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Summary: the random response of a sliding block with Coulomb friction 
subjected to a stationary zero-mean Gaussian white noise is investigated. The 
Fokker-Planck-Kolmogorov equation in the transition probability density 
function is solved analytically. 

 

Introduction 

The dynamics of a rigid body sliding on a rough surface and excited by a stochastic agency  
has attracted the attention of many scholars. If this is a Gaussian white noise stochastic 
process, from a theoretical point of view, the statistical characterization of the motion can be 
obtained by solving the associated Fokker-Planck-Kolmogorov equation (FPK) in the 
transition probability density function (PDF) of the response. However, in the presence of a 
nonlinear damping term the FPK equation is not analytically solvable unless the damping 
term is a function of the mechanical energy of the system.  

Here, we consider the case of a rigid block that slides on a surface with Coulomb (dry) 
friction in the absence of a restoring force and of any other damping mechanism. The second 
order motion differential equation is transformed into a first order one. In this way, the FPK 
equation is analytically solved. The evolution of the transient PDF of the velocity is shown. 

 

Position of the problem 

The motion equation of a rigid body sliding on a rough surface with Coulomb friction and no 
restoring force is written as 

                                          )()(signum)( tWXgmtXm σ+µ−= &&& ,                                      (1) 

where m is the mass of the body, µ is the friction coefficient, g is the gravity acceleration, σ is 
a positive parameter representing the strength of the excitation, )(signum •  is the sign 

function, and W(t) is a stationary zero-mean Gaussian white noise process having 

autocorrelation function [ ] ).()()( τδ=τ+tWtWE   

Keeping into account that )()( tXtV &= , with the aid of the transformation mYV σ= , Eq. (1) 

is recast as 

                                                 )()(signum)( tWYtY +κ−=& ,                                         (2) 

where σµ=κ gm . The Fokker-Planck-Kolmogorov equation associated with Eq. (2) is 

                                               [ ]
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where ( )00,, tytypp Y=  is the transition probability density function of Y(t). The initial 

condition is )(),( 000 yytypY −δ= , while the boundary conditions impose vanishing 

probability flux at ∞± . 

The steady-state probability density function is found as 

                                                     ( )yyp stY κ−κ= 2exp)(, .                                          (4) 
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Figure 1: plots of the transition PDF for different times ( )tm222κ=τ . 

 

In order to determine the transition probability density function, the ansatz of separate 

variables is made, that is ( ) )()(,, 00 xtTCtytypY ϕ= , which gives rise to the Sturm-Liouville 

problem 

                                                    0)()(2)( =λϕ+ϕ′κ+ϕ ′′ xxx .                                       (5) 

The expression of the transition probability density function is not given because of space 
limitation. 

 

Results and conclusions 

The transition probability density function is plotted in Fig. 1 for the following values of the 
parameters: .01.0,1,05.0 =σ==µ m  These values yield 5=κ . In the plots the abscissa is 

ym22κ  and the ordinate, the time, is tm222κ=τ . 0y  is zero. 

Because of the sign function for all times the probability density function has a cusp in the 
origin. As the initial probability density function is a Dirac delta, that is a spike, for short 
times it is peaked but with pronounced tails (first plot). For intermediate times the largest 
value diminishes (second plot), before increasing again. In the steady state, the probability 
mass is concentrated around the origin. 

Knowing the transition probability density function allows computing the time evolution of 
the mean square value, the correlation function, and the power spectral density: these 
quantities are not reported because of space limitation. 
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Summary: Direct measurements on dry rough contacts involving soft materials 
show that the real contact area significantly decreases under shear. All data 
obey a single reduction law enabling excellent predictions of the static friction 
force. The reduction rate of individual contacts obeys a scaling law valid from 
micrometric to millimetric junctions. 

 
Introduction 
The frictional properties of a rough contact interface are controlled by its area of real contact. 
In particular, the real contact area is proportional to the normal load, slowly increases at rest 
through aging, and drops at slip inception. Accounting for these three dependencies together 
has been a major success in the science of friction because it provides a consistent picture of 
the physical mechanisms underlying the ubiquitous state-and-rate friction law [1], which is 
obeyed by multicontacts in a variety of materials. 
However, a series of experimental observations suggest that the picture may not be fully 
comprehensive yet. These observations, made on smooth contacts, have repeatedly indicated 
that the area of apparent contact depends on the value of the tangential load applied to the 
interface. In particular, the area of apparent contact decreases when smooth elastomer-based 
sphere/plane contacts are increasingly sheared [2,3]. It is therefore tempting to hypothesize 
that not only smooth but also rough interfaces have a dependence of their contact area on the 
tangential load. To test this hypothesis, we carried out experiments to monitor, in 
multicontacts involving elastomers or human fingertips, the evolution of the area of real 
contact when the tangential load is increased from 0 to macroscopic sliding [4]. 
 
Methods summary 
A slider made of a flat, smooth bare glass plate is placed in frictional contact onto a rough 
elastomer block of polydimethylsiloxane (PDMS). The slider is driven horizontally by a 
motorized linear stage moving at constant velocity. The normal load is applied using dead 
weights and the tangential force is monitored as the slider is driven toward macroscopic 
sliding. Noninvasive, in situ contact imaging is performed simultaneously and allows to 
accurately measure the evolution of the area of real contact as the interface is increasingly 
sheared and starts to slide macroscopically. 
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Results summary 
The area of real contact at the static friction peak is found to be proportional to the 
corresponding static friction force. This proportionality defines a frictional shear strength of 
the interface which varies when various coatings are applied on the glass surface. 
Well before static friction, the area of real contact is found to decrease significantly, up to 
30%, as the tangential load is increased towards macroscopic sliding. The decrease is found to 
be quadratic as a function of the tangential load, for all contacts tested. 
The two above-mentioned laws allow one to predict the value of the static friction force, 
which is found in excellent agreement with the measurements. 
Those results, obtained using PDMS, are found to also apply to human fingertip contacts. 
We then compared the area-reduction rate of individual micro-junctions within rough contacts 
with that of smooth sphere/plane contacts. We found that it follows a well-defined scaling 
law, from micrometer-sized micro-contacts to millimeter-sized sphere/plane contacts. 
 
Discussion 
The reduction of apparent contact area under shear observed in the literature was interpreted 
either as a result of viscoelasticity or adhesion. In our experiments on the real contact area [4], 
we could rule out viscoelasticity, leaving open an adhesion-based origin. 
While the adhesive friction models from the literature treat the case of axisymmetric smooth 
contacts [2,3], both assumptions are broken in our experiments. 
Our results indicate that, as soon as shear is applied to a rough contact, its area of real contact 
can vary significantly. This calls for improved rough contact models incorporating shear 
stimuli in addition to the classical normal loading conditions. 
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Experimental validation of three-points bending test with various
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Summary: The three-point bending test is widely used standard test for
multilayered structures. Due to geometrical sizes of cylindrical supports
comparable to tested beam, this test can be a perfect example to validate
various contact algorithms (Lagrange or penalty) as well as to answer the
question if we need to discretize the supporting cylinders.

The widely used engineering validation of the three-point bending test does not include the
contact modeling and assumes that only point forces are applied. In the real size test which
necessary to validate the composite panel used in aircraft industry, the sizes of cylindrical
supports, see Fig. 1. are in a range of the sizes of specimen. Two sets of specimens with width
B=9 mm. and height H=9 mm are tested: the long with full length L=170 mm and the short
ones with L=50 mm. The most important for contact is that the diameter of supporting as well
as loading cylinders is d=10 mm. The geometry of contact is definitely influencing the results.

(b)
(a)

Figure 1: Geometry of the three-bending test. Diameter of loading (supporting) cylinders is d.

The three layers panel is made of carbon orthotropic composite HSE 180 REM with a softer
core (E1=131 GPa, E2= E3=5.9 GPa, ��������=0.29). Due to soft core the whole specimen is
experiencing highly nonlinear physical behavior especially for shear stresses, even for small
deflections. Identification of the full material model is a quite a cumbersome process, because
it will require the modeling on a micro level with identification of the carbon filaments and
filling. Another procedure, which is proper for engineering needs as well as very fast for
validations: the directional modulus are measured in 1D standard extension test, while the
shear modulus are G12= G13 are identified via the three-points bending test. The measured
result for the core is showing the softening behavior during loading until damage, see Fig. 2.
Such an effect is visually illustrated by high deformation of the core. Long lasting
investigations, both experimental, and theoretical ones [1-12] allow to develop the following
strategy:

1) The material model can be assumed as physically non-linear with a softening core
validated in the experiment. This allows to avoid the highly sophisticated multi-scalar
models for the validations of micro parameters. The model exploiting anisotropy and
tabulated via experiments softening behavior is fully sufficient for further needs.
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2) The contact behavior between supporting and loading cylinders can be modeled as
embedded Hertz stresses between the plate and supporting (loading) cylinders.

Figure 2: Experimental results: softening of the core for shear stresses.
The current investigation is aimed now to validate the contact behavior using the
computational contact mechanics algorithms only. Namely the contact stresses are not
imbedded as in 2), but contact is directly modeled via a various sets of contact algorithm
using both Lagrange and penalty methods as well as specially developed for rigid surfaces
[13], [14].
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Summary: The twin-disk frictional test was carried out to investigate the 
mechanism of flange climb derailment. It was found that there is a peak value 
of the wheel/rail traction coefficient during running-in period. And the existence 
of subsurface plastic layer just below the contact position to the increase of 
traction characteristics was indicated. 

 
 Introduction 
Since the frictional condition between railway wheel and 
rail has an important role in the transmission of driving 
force and braking force, it should be kept at a high level 
to secure the appropriate acceleration performance and 
braking distance. On the other hand, it is known that high 
traction coefficient in lateral direction at sharp curves 
increases the risk of wheel climb derailment occurring [1] 
and several derailments have occurred within relatively 
soon after the re-profiling of the wheel [2]. The aim of 
this work was to investigate traction characteristics of 
wheel flange/rail gauge corner interface during running-
in period to understand the mechanism of the wheel climb 
derailment. 
 
Methodology 
Figure 2 shows a set of wheel disk and rail disks after 
attachment on the experimental apparatus. This apparatus 
can simulate the actual contact condition between wheel 
and rail using two servomotors. Furthermore, to simulate 
the wheel flange/rail gauge corner contact, the wheel disk 
was made to be conic in shape and the rail disk was made 
to be a “bowl” shape and the traction force in lateral 
direction was evaluated.  
 
 Results 
Figure 3 shows the change of traction coefficient in the 
lateral direction with running time. there is a peak value 
of the traction coefficient between wheel flange and rail 
gauge corner at running-in period. 

Figures 4 shows the change of surface topography of 
wheel disk and rail disk for different stage. Here, the 
surface texture for “Stage II” were obtained by 
discontinuing a test after confirming the reproducibility 
of the change of traction coefficient (4th test in Figure 3).  

 

Figure 1:  Wheel flange/rail gauge 
contact position 

 
Figure 2:   A set of wheel disk 
and rail disks after attachment on 
the experimental apparatus 

 

Figure 3:    Change of traction 
coefficient in lateral direction with 
running time 
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It is clearly found that the surface 
deformation was increased with the 
progress of stage and the direction 
of plastic flow corresponded to that 
of lateral tangential force. And the 
roughness at Stage II kept the 
minimum value of Stage I. 

Figures 5 shows the metallic 
structures measured by optical and 
scanning electron microscope. It is 
clearly found that the plastic 
deformation was increased with the 
progress of stages for all kinds of 
disks. Especially the subsurface 
plastic layer was found at Stage II. 
It is thought that the existence of 
this layer increases the proportion 
of bulk hardness to shear surface 
strength and the traction coefficient 
at Stage II. 

 

 
Figure 5: Metallic structures measured by optical and scanning electron microscope. 

 
Conclusions 
The traction characteristics of wheel flange/rail gauge corner interface was investigated. The 
test was carried out using twin-disk test machine. It was found that there is a peak value of the 
wheel/rail traction coefficient during running-in period. Surface conditions at the characteristic 
stages were also investigated. As a result, the subsurface plastic layer was found at Stage II. It 
is thought that the existence of this layer increases the proportion of bulk hardness to shear 
surface strength and the traction coefficient. These findings might inform rail service providers 
about optimal wheel profiling methods and surface treatments to control the frictional condition 
between wheel and rail and reduce the likelihood of flange climb derailment. The results of 
parametric tests and interface model will be presented to explain these phenomenon in the 
presentation. 
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Figure 4: Change of surface topography of wheel disk 
and rail disk for different stage. 
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Free vibration of functionally graded plates resting on elastic 
foundation 
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Summary: the free vibration of functionally graded materials plates on an elastic 
foundation was investigated, based on the theory of FSDT with different shear 
factors. The position of the neutral surface for the FG plate is determined. The 
accuracy of the present solutions is verified by comparing the results obtained 
with the solutions found in literature. 

 
Introduction 
In recent years, functionally graded materials (FGMs) have gained considerable attention in 
many engineering applications. FGMs are considered as a potential structural material for future 
high-speed spacecraft and power generation industries.[1] Extensive studies have been 
conducted to analyze the behavior of structures in advanced composite materials. Vel and Batra 
[2], presented a three dimensional exact solution for free and forced vibrations of simply 
supported functionally graded rectangular plates. Huang et al. [3] investigated the benchmark 
solutions for thick FGPs resting on Winkler Pasternak elastic foundations using the 3D 
elasticity theory. Lu et al. [4], based on the 3D elasticity theory, studied the free vibration 
analysis of FG thick plates resting on elastic foundation.  
Theoretical formulations 
The material nonhomogeneous properties of FG plate P, as a function of thickness coordinate. 
The position of the neutral surface of the FG plate is determined to satisfy the first moment with 
respect to Young’s modulus being zero as follows[5]  
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The governing equations of equilibrium can be derived by using the principle of virtual 
displacements. The equilibrium equations associated with the present FSDT are  
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The displacement functions that satisfy the equations of boundary conditions  are selected as 
the following Fourier series: 
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Results  
Example: The Poisson’s ratio is fixed at m = 0.3. Comparisons are made with available 
solutions in literature. The material properties used in the present study are: 
Metal (Aluminium, Al):        EM = 70 GPa ; ρc = 2702 kg/m3.  
Ceramic (Alumina, Al2O3):   EC = 380 GPa; ρm = 3800 kg/m3 

  (a) (b) 
 
Figure 1: Soft-EHL problem: The effect of the power law index p on no dimensional 
fundamental frequency Dha /2 UZ  of FG plates on the elastic foundation: a Kp = 10; b 
Kw = 100. 

Table 1: Formatting used in paragraph headings. 

h/a kw, kp Akhavan et al[6]. Ait Atmane et al[7]. present 

0.1 
0, 0 19.084 19.0658 19.7139 
100, 10 25.6368 25.6236 26.1094 
1000, 100 57.3969 57.3923 57.6110 

0.2 
0, 0 17.5055 17.4531 18.0425 
100, 10 24.3074 24.2728 24.7004 
1000, 100 56.0359 56.0311 56.2259 
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