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SCIENTIFIC PROGRAM 
 

Wednesday, 5 July 
8:00 Registration 

9:00 Opening 

9:20 Keynote 1 

 Peter Wriggers Contact of flexible polyhedra modelled by virtual elements 

10:00 Session 1 

 Rolling contact 

 10:00 
A novel Boundary Element formulation for steady-state viscoelastic 
circular contacts 
Santeramo M., Putignano C., Vorlaufer G., Krenn S., Carbone G. 

 10:20 Wear and power dissipation modelling in wheel-rail contact 
Myśliński A., Chudzikiewicz A. 

 10:40 
Non-linear dependencies of filler-reinforced elastomers in rolling 
contact: An experimental and numerical investigation 
de Lorenzo Oliveira M., Le Tallec P., Bussetta P., Berger E., 
Nuytten S. 

11:00 Coffee break 

11:20 Session 2 

 A - Adhesion and Debonding 

 11:20 
A thermodynamic motivated RCCM damage interface model using 
explicit dynamics CD-Lagrange scheme 
Larousse P., Dureisseix D., Gravouil A., Georges G. 

 11:40 
Numerical simulation of adhesive contacts of an elastic quarter 
space with freely sliding side 
Li Q., Popov V.L. 

 12:00 The effect of adhesion in viscoelastic contact mechanics 
Mandriota C., Carbone G., Menga N. 

 B - Delamination, fracture and failure processes 

 12:20 
Numerical simulation for contact problems in crack growth with 
phase field approach 
Takaishi T., Kimura M. 
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 12.40 
Extending non-smooth contact mechanics to cohesive zone 
modelling 
Collins-Craft N.A., Bourrier F., Acary V. 

 13:00 Double peeling of thin viscoelastic tapes from rigid substrate 
Ceglie M., Menga N., Carbone G. 

13:20 Lunch 

14:20 Keynote 2 

 Mike Puso Recent topics on immersed boundary methods, unbiased 
mortar contact and contact dynamics 

15:00 Session 3 

 Solution algorithms and numerical efficiency – Section 1 

 15:00 
Combination of adaptive mesh refinement and high performance 
computing for accurate solution of elastostatics contact mechanics 
problems 
Epalle A., Ramière I., Latu G., Lebon F. 

 15:20 
Efficient and accurate numerical time integration of arbitrary fine 
meshed small sliding contact via contact modes and hyper reduction 
Witteveen W., Koller L. 

 15:40 Hybrid domain decomposition for huge contact problems 
Dostal Z., Brzobohatý T., Horák D., Vlach O. 

 16:00 Stabilized FEM for contact problems 
Gustafsson T., Stenberg R., Videman J. 

 16:20 
An adaptive quasistatic contact model based on IGA applied to 
impact analysis in flexible multibody systems 
Rückwald T., Held A., Seifried R. 

16:40 Coffee break 

17:00 Departure for the visit of the Royal Palace 
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Thursday, 6 July 
8:10 Registration 

8:40 Keynote 3 

 Rolf Krause Multilevel Strategies for Contact Problems - from inner to 
outer approximations of the feasible set 

9:20 Session 4 

 Solution algorithms and numerical efficiency – Section 2 

 9:20 
A Novel Method for Multibody Dynamics Contact Represented by 
Linear Complementarity Problems 
Lou Q., Kovecses J. 

 9:40 
Multiscale methods for substructuring multibody systems with 
contact 
Hutchison C., Hewlett J., Kövecses J. 

 10:00 Targeting a faster time-to-solution of mortar-based contact problems 
Steimer C., Mayr M. Popp A. 

 10:20 
Model order reduction for the fatigue life prediction of wire ropes in 
tension and bending 
Guidault P.A., Zeka D., Néron D., Guiton M., Enchéry G. 

 10:40 
Numerical analysis of a non-clamped dynamic thermoviscoelastic 
contact problem 
Bartman P., Bartosz K., Jureczka M., Szafraniec P. 

11:00 Coffee break 

11:20 Session 5 (parallel session) 

 Solution algorithms and numerical efficiency – section 3 

 11:20 
Error analysis of the Hybrid Hyper-Reduction method for frictionless 
contact problems. 
Le Berre S., Ramière I., Ryckelynck D. 

 11:40 
Contact mechanics and inseparability: towards dictionary-based 
sparse approximations 
Kollepara K.S., Aguado J., Le Guennec Y., Silva L. 

 12:00 Parallel, High Performance Contact Solvers 
Dokken J., Richardson C., Roggendorf S., Wells G.N. 

 12:20 
Energy conserving contact-impact algorithm using the method of 
Lagrange multipliers and the explicit central difference time 
integration scheme 
Markovic D., Casadei F., Larcher M. 
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 12:40 
Interior point methods for computing frictional contact problems with 
hyperstaticity 
Nguyen M.H., Acary V., Armand P. 

 13:00 
A monolithic computational method for elasto-dynamics with 
plasticity and contact based on variational approach. 
Acary V., Bourrier F., Viano B. 

11:20 Session 5B (parallel session) 

 A - Modelling of friction joints under dynamical loading 

 11:20 
Variability of vibration response in friction-damped structures due to 
non-unique residual tractions: Computation of bounds 
Ferhatoglu E., Groß J., Krack M. 

 11:40 Competing dry friction contact models for underplatform dampers 
Gastaldi C., Gola M. 

 B - Multi-scale approaches 

 12:00 
Homogenization based two-scale modelling of fluid-saturated porous 
media with self-contact in micropores 
Rohan E., Heczko J. 

 12:20 
Multi-scale analysis of contact of rough surfaces through FEM/BEM 
code coupling 
Shaw R., Mayr M., Popp A. 

 C - Multifield problems with contact constraints 

 12:40 
A thermodynamically consistent computational framework for brittle 
crack propagation along contact interfaces 
Athanasiadis I., Shvarts A., Lewandowski K., Pearce C., 
Kaczmarczyk L. 

 D - Contact in biomechanics 

 13:00 
An Embedded Approach for Fluid-Structure-Contact Interaction 
Problems and application to the aortic flow. 
Nestola M.G.C., Zulian P., Rossinelli D., Krause R. 

13:20 Lunch 

14:20 Session 6 (parallel session) 

 A - Solution algorithms and numerical efficiency – Section 4 

 14:20 Rattle for mechanical systems with frictional unilateral constraints 
Harsch J., Capobianco G., Eberhardt L., Eugster S.R., Leine R.I. 

 14:40 An algebraic domain decomposition strategy for the solving contact 
problems 
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Kothari H., Zulian P., Krause R. 

 15:00 
Novel approach for accurate identification of the real contact area for 
numerical modelling of triboelectric nanogenerators 
Shvarts A.G., McGinn T., Athanasiadis I., Kaczmarczyk L., Pearce 
C.J., Kumar C., Mulvihill D.M. 

 15:20 Improving performance of augmented Lagrangians 
Horak D., Dostal Z., Kruzik J., Vlach O. 

 B - General papers – Section 1 

 
15:40 Beam-inside-beam contact 

Magliulo M., Lengiewicz J., Zilian A., Beex L. 

16:00 Physics-informed neural networks for contact mechanics 
Sahin T., von Danwitz M., Popp A. 

14:20 Session 6B (parallel session) 

 A - Discrete element methods for contact 

 14:20 
Simulating tribocharging of flowing granular materials with patchy 
particles 
Preud’homme N., Opsomer E., Lumay G. 

 14:40 
An Improved Normal Compliance Method for Non-Smooth Contact 
Dynamics 
Abide S., Barboteu M., Dumont S., Nacry F., Nguyen V.A.T. 

 15:00 
Comparative analysis of experimental and numerical results for 
viscoelastic indentation of thin layers 
Mikayilov E., De Carolis S., Santeramo M., Carbone G., 
Putignano C. 

 B - Constraints enforcement methods 

 15:20 Third-medium model for contact and pneumatic actuation 
Faltus O., Rokoš O., Horák M., Doškář M. 

 15:40 Nested objective functions for frictional contact 
Hurtado D.R., Beex L. 

 C - Contact at the nanoscales 

 16:00 
A coarse-grained molecular dynamics method for simulating fatigue 
crack propagation 
Niknafs S., Silani M., Concli F., Aghababaei R. 

16:20 Coffee break 

16:40 Session 7 

 Friction and wear 
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 16:40 Breakdown of Reye's theory in single-asperity wear 
Garcia-Suarez J., Brink T., Molinari J.F. 

 17:00 
Railway wheel wear calculation: comparison of local and global 
applications of Archard’s law 
Bosso N., Magelli M.,  Zampieri N. 

 17:20 A Novel Single Pass Unbiased Frictional Contact Algorithm 
Sahu I., Petrinic N. 

 17:40 Effect of frictional weakening in fretting wear 
Yastrebov V.A., Basseville S. 

18:00 Session end 

19:30 Guided tour of the town with touristic bus 

20:40 Conference dinner  
at the restaurant of the “Società Canottieri Caprera” 
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Friday, 7 July 
8:10 Registration 

8:40 Keynote 4  

 Loïc Salles  Computational methods in Tribomechadynamics 

9:20 Session 8 

 Contact detection algorithms 

 9:20 
Novel framework for modelling contact of curved surfaces 
Bignold S., de Frias G., Shelton T., Buche M., Wagman E., Miller S., 
Beckwith F., Manktelow K., Merewether M., Parmar K, Thomas J., 
Trageser J., Treweek B., Veilleux M. 

 9:40 
Strategy to address two-dimensional pointwise concave contact 
problems 
da Silva L., Craveiro M.V., Gay Neto A. 

 10:00 
High-Fidelity Stress Fields in Contact Problems using Beam, Plates, 
and Shells Layer-Wise Models 
Saputo S., Petrolo M., Pagani A., Carrera E. 

 10:20 
Robust and generic contact detection strategy using tandem 
traversal of Bounding Volumes Hierarchies and spatio-temporal 
intersection 
Motte A., Bovet C., Chiaruttini V., Jamond O., Prabel B. 

 10:40 
A refined algorithm for hierarchical face clustering and contact 
detection for segment-to-segment contact search between three-
dimensional deformable bodies with irregular surface meshes 
Chuo M.C.K., Izzuddin B.A. 

11:00 Coffee break 

11:20 Session 9 

 Discretization techniques 

 11:20 
Virtual element methods and higher order penalty-based Node-to-
Segment contact 
Moherdaui T.F., Gay Neto A., Wriggers P. 

 11:40 
Use of nonsymmetric unilateral cinematic constraints to solve 
Coulomb contact/friction problem 
Verpeaux P., Breuzé M. 

 12:00 
Towards an Embedded Mesh Approach for Isogeometric Boundary 
Layers in Contact Mechanics 
Loera Villeda E.G., Steinbrecher I., Popp A. 
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 12:20 HHT-α and TR-BDF2 schemes for dynamic contact problems 
Huang H., Pignet N., Drouet G., Chouly F. 

 12:40 Application of a posteriori analysis to contact problems 
Fontana I., Di Pietro D.A., Kazymyrenko K. 

 13:00 
An arbitrary order contact formulation using Lagrange multipliers 
from Raviart-Thomas space 
Kaczmarczyk L., Athanasiadis I., Shvarts A.G., Lewandowski K., 
Pearce C.J. 

13:20 Lunch 

14:20 Session 10 

 General papers – Section 2 

 14:20 Tube/projectile interaction modeling using finite element simulation 
Collas T., Lebon F., Rosu I., Ningre C. 

 14:40 Fast simulations of parametric problem with contact non-linearity 
Pawar G.S., Kulkarni S.S. 

 15:00 
Identification of contact traction and material parameters for soft 
bodies 
Lavigne T., Bordas S.P.A., Lengiewicz J. 

 15:20 Third Medium Contact Method for Topology Optimization 
Frederiksen A.H., Sigmund O., Poulios K. 

 15:40 Beam lattice metamaterials with internal contact and instabilities 
Horak M., La Malfa Ribolla E., Jirásek M. 

 16:00 Still on the shifted penalty method 
Zavarise G. 

16:20 Coffee break 

16:40 Conference closure 
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Rolling contact 

Wednesday, 10:00 – 11:00 
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A novel Boundary Element formulation for steady-state viscoelastic 
circular contacts 
 
Michele Santeramo1, Carmine Putignano1, Georg Vorlaufer2, Stefan Krenn2, Giuseppe 
Carbone1 
1Department of Mechanics, Mathematics and Management, Politecnico di Bari, Bari, 
Italy 
E-mail: michele.santeramo@poliba.it , carmine.putignano@poliba.it , 
giuseppe.carbone@poliba.it   
2AC2T research GmbH, Wiener Neustadt, Austria 
E-mail: Georg.Vorlaufer@ac2t.at , Stefan.Krenn@ac2t.at  
 
Keywords:  Viscoelasticity, Friction, Soft matter. 
 
In the last decades, soft mechanics has attracted more and more attention from a broad cross-
disciplinary community, due to the really ubiquitous presence of soft materials in everyday life. As 
a matter of fact, the latter are widely spreading in industry, where an increasing shift from hard 
metals to polymeric materials is observed. Indeed, because of their advantageous characteristics in 
terms of lighter weights, environmental resilience, and lower manufacturing costs, polymers and 
polymer composites are now frequently deployed in power transmission components. Examples 
include gears, seat belts, tires, bearings, seals, etc. However, difficulties arise in predicting the 
mechanical response of such materials. Thus, the main angle of worldwide researchers is to provide 
a better understanding of viscoelastic materials, which exhibit a pronounced time- and temperature-
dependent behavior. 
Therefore, the intricate rheology that distinguishes these materials contributes to the complexity of 
contact problem formulation, which is exacerbated when soft bodies come into contact. In particular, 
it is well known that at very low speeds the deformable solid behaves as a soft elastic body, as it 
enters the so-called elastic rubbery region, and viscoelastic energy dissipation is negligible. On the 
other hand, at very high speeds, the material is in the glassy region and behaves elastically, but it is 
much stiffer than in the rubbery zone. Instead, the transition region is mainly the region in which 
energy dissipation occurs during rolling or sliding conditions, and thus viscoelasticity becomes 
crucial.  
A variety of analytical, numerical, and experimental approaches have helped to enhance our 
comprehension in the field of viscoelastic mechanics; though, attention has been paid to the 
paradigmatic example of non-conformal contact, where a rigid indenter slides/rolls over a 
viscoelastic half-plane. Nonetheless, circular contact problems are of the utmost importance in 
mechanical applications: the pin-joint or the rolling element bearing are representatives of conformal 
and conformal-like problems. Furthermore, this type of problem is very often encountered in 
biomechanics, where hip joints and prostheses are representatives.  
The focus of this work is then to provide a further contribution to the field by investigating the 
steady-state rolling/sliding circular contact. Specifically, we provide a Boundary Element 
methodology for the paradigmatic circular contact problem of a rigid cylindrical pin rolling into a 
holed infinite viscoelastic space, as sketched in Figure 1a. Validation of numerical predictions with 
the existing analytical solution provided by A. Persson [1] for the elastic case assessed the approach 
effectiveness, blazing the trail to the viscoelasticity regime investigation. It is crucial to emphasize 
that the proposed methodology is not limited to conformal contacts because the formulation is 
generally developed for both conformal and non-conformal surfaces. In particular, it is based on the 
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definition of ad-hoc Green’s functions [2], via a complex-variable method [3,4], which take into 
account the circular hallmark of the contact domain, and it is able to deal with real viscoelastic 
materials, characterized by a continuous spectrum of relaxation times. 
The present methodology paves the way for further research in lubricated contacts, such as the case 
of a journal bearing where the shaft and the bushing are both linearly viscoelastic, and in multiple 
contact problems, such as the case of a rolling element bearing with linearly viscoelastic races and 
metallic rolling elements (see Figure 1b), where viscoelasticity plays a fundamental role in the 
bearing load distribution. Furthermore, early experimental outcomes seem to corroborate, in terms 
of friction, the numerical results. 
 

         
 

(a)                                           (b) 

Figure 1: Schematic of a rigid cylindrical pin rolling into a holed infinite viscoelastic space (a); 
schematic of a rolling element bearing (b). 

 
 

References 
[1] Persson, A., “On the stress distribution of cylindrical elastic bodies in contact.”, Ph.D. 
 dissertation, Chalmers, Tekniska, Goteborg, Sweden (1964). 
[2] Carbone, G., Putignano, C., “A novel methodology to predict sliding and rolling friction of 
 viscoelastic materials: Theory and experiments.”, Journal of the Mechanics and Physics of 
 Solids, 61, 1822-1834 (2013). 
[3] M. Rothman, ISOLATED FORCE PROBLEMS IN TWO-DIMENSIONAL ELASTICITY (I)†, 

The Quarterly Journal of Mechanics and Applied Mathematics 3 (3), 279–296 (1950). 
[4] M. Rothman, ISOLATED FORCE PROBLEMS IN TWO-DIMENSIONAL ELASTICITY (II), The 

Quarterly Journal of Mechanics and Applied Mathematics 3 (4),469–480(1950). 
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Wear and power dissipation modelling in wheel-rail contact  
 
Andrzej Myśliński1, Andrzej Chudzikiewicz2 
1Systems Research Institute, Warsaw, Poland  
E-mail: myslinsk@ibspan.waw.pl 
2Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of 
Transport, Radom, Poland 
E-mail: ach1@wt.pw.edu.pl 
 
Keywords: elasto-plastic contact, friction, wear, energy dissipation, FE model, generalized 
Newton method, wear distribution. 
 

The paper is concerned with the numerical evaluation of energy dissipation flow and wear [1,3] 
in wheel-rail contact problems. Wear is a complex physical process characterized by the 
deformation and removal of material from a solid surface due to the mechanical action exerted by 
the another solid [7,8]. Many different physical and/or chemical factors may generate the occurrence 
of the wear phenomenon on contacting surfaces [2,4,6,10].  

The two-dimensional wheel-rail contact problem between a rigid wheel and an elasto-plastic rail 
lying on a rigid foundation is considered. The contact phenomenon includes Coulomb friction, 
frictional heat generation as well as the wear of the contacting surfaces. The displacement and stress 
of the rail in contact are governed by the coupled elasto-plastic and heat conductive equations. The 
elastic and plastic responses are approximated,  respectively, by Hooke’s law and by von Mises 
yield criterion with isotropic power law hardening.The wear depth function appears as an internal 
variable in the non-penetration condition updating the gap between the worn surfaces of the bodies. 
Moreover the dissipated energy due to friction is calculated to evaluate the loss of the rail material 
and to determine the shape of the contacting surfaces during the wear evolution process. Therefore 
the wear phenomenon is modeled by the combined Archard and power dissipation  models. 
Focusing on energy dissipation evolution in wheel-rail elasto-plastic contact problems extends the 
authors results from [9].   

The contact problem is solved numerically. The finite element method is used to discretize it. 
The original coupled problem is solved numerically using the splitting method [5,9]. In this 
approach first for a given temperature the displacements, stresses and wear depth are calculated 
using the generalized Newton method. The plastic flow and friction inequality conditions are 
reformulated as equality conditions using the nonlinear complementarity functions [5]. In the next 
step, for a given displacement and stress,  the temperature is updated using Cholesky method. The 
distribution of the surface flash temperatures and stresses as well as the evolution of the dissipated 
energy as well as the wear depth and the shape of the contact surfaces due to wear are reported and 
discussed.  

The presented numerical results indicate that the obtained contact patches are characterized by 
longer zones and lower stress intensity than in the elastic case. The dissipated energy method and 
contact interface shape update strategy are efficient and precise tools to evaluate the wear 
distribution.  The impact of hardening parameters as well as temperature dependent material 
parameters and creepage on the wear evolution process requires further research.  

 
References 

[1] Alarcon, G.I.,  Burgelman, N., Meza, J. M.,  Toro, A., Li, Z.,  “Power dissipation modeling 
in wheel/rail contact: Effect of friction coefficient and profile quality”, Wear, 366-367,   
217-224 (2016).  
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Non-linear dependencies of filler-reinforced elastomers in rolling contact:
An experimental and numerical investigation

Matheus de Lorenzo Oliveira1, Patrick Le Tallec1, Philippe Bussetta2, Eric Berger2, Simon Nuytten2

1Laboratoire de Mécanique des Solides, Ecole Polytechnique, France
E-mail: matheus.de-lorenzo@polytechnique.edu, patrick.letallec@polytechnique.edu
2Michelin Technological center Ladoux, France
E-mail: philippe.bussetta@michelin.com, eric.berger@michelin.com, simon.nuytten@michelin.com

Keywords: Contact, Friction, Elastomer, Viscoelasticity, Constitutive Law, Non-linear, Tribometer, Fi-
nite Element Method.

In the automotive industry, the research and development of tires often requires careful considera-
tion of many tribological contributions to sliding friction between industrial filled-rubber elastomers and
the road. Among many potential mechanisms in place, we highlight: hysteresis, adhesion, lubrication,
flash-heating, dewetting and wear, which can be coupled across different asperities sizes/scales at the
rough interface [1]. Within a multi-scale friction framework, two frequent numerical strategies are men-
tioned: half-space approximations in a Boundary Element formulation [2]; and contact homogenization
techniques for Finite Elements [3]. The first approach provides a fast and practical methodology to
compute complex contact interactions, however in many cases this choice is, by construction, restrained
to small transformations and linear constitutive models. The second approach can be extended to finite
strains and more complex constitutive models at the cost of a higher computational complexity.

Due to the complex numerical trade-off between fast and straightforward implementation versus
robust and accurate multi-scale approaches added with the convoluted interaction of experimental pro-
cesses, the impact of a non-linear constitutive law in the resulting friction is often overlooked. What
makes the subject elusive in tribology, from an experimental standpoint, is the difficulty to devise a
procedure that isolates the hysteresis contribution and diminishes the other mechanisms occurring at
the interface. From a numerical perspective, even if a simpler contact indentation is considered on a
Finite Elements environment, many softwares utilize Hyper-viscoelastic models, based on a division of
the stress tensor between an equilibrium hyperelastic contribution and a non-equilibrium viscoelastic
contribution (N parallel Maxwell rheological models). However, there is no guarantee, a priori, that
this class of constitutive models satisfies the second principle of thermodynamics [4].

In this work, to address the considerations made above, a simple experimental procedure was de-
vised. A landing contact procedure (compression with sliding) for a range of compressive loads and
velocities was imposed between a filler-reinforced rubber provided by Michelin and a simple substrate
by means of a hydraulic angular tribometer to recover its friction response, as shown in Figure 1.

Figure 1: Experimental main components; friction results for varying velocity and/or compressive load.

1
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The substrate component is a cylindrical base containing a ring of detachable spherical indenters
which will enter in contact with the elastomer. To reduce the multi-physical coupling, the spheres were
coated in Teflon to minimize the contribution of smaller scales, the contact test always occurs submerged
in water with controlled temperature, the water was mixed with small doses of an emulsion to reduce its
surface tension, thereof its risk of dewetting.

The experimental conditions are to be compared with its numerical reconstruction in an Finite Ele-
ment framework with a second order explicit solver (commercial software Impetus Afea) with a penalty
contact method, as shown schematically in Figure 2. To study the consequence of non-linear constitutive
effects, two material models calibrated with Dynamic Mechanical Analysis procedures are considered:
an exemplary hyper-viscoelastic formulation with a Mooney-Rivlin free-energy and 4 maxwell branches
and another, thermodynamicaly stable, constitutive law [5] based on the work of Lopez-Pamies [6].

Figure 2: (a) Numerical reconstruction into. (b) Effective Geometrical Strain Field suring sliding. (c)
Contact pressure field on the highlighted (in red) region from (b).

This proposition evaluates the pertinence of the experimental test to represent the hysteresis contri-
bution to friction and the impact of non-linear coupled deformation and deformation rate sensitivities to
represent the experimental tribological response.

References
[1] Vakis, A., I., et al, “Modeling and simulation in tribology across scales: An overview,” Tribology

International, 125, 169-199 (2018).
[2] Yastrebov, V., A., Anciaux, G., Molinari, J-., F., “From infinitesimal to full contact between rough

surfaces: Evolution of the contact area,” International Journal of Solids and Structures, 52, 83-102
(2015).

[3] Wagner, P., et al, “Numerical multiscale modelling and experimental validation of low speed rub-
ber friction on rough road surfaces including hysteretic and adhesive effects,” Tribology Interna-
tional, 111, 243-253 (2017).

[4] Govindjee, S., Potter, T., Wilkening, J., “Dynamic stability of spinning viscoelastic cylinders at
finite deformation,” International Journal of Solids and Structures, 51, 21-22 (2014).

[5] Le Tallec, P., Rahier, C., Kaiss, A., “Three-dimensional incompressible viscoelasticity in large
strains: Formulation and numerical approximation,” Computer methods in Applied Mechanics and
Engineering, 109, 233-258 (1994).

[6] Kumar, A., Lopez-Pamies, O., “On the two-potential constitutive modeling of rubber viscoelastic
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A thermodynamic motivated RCCM damage interface model using
explicit dynamics CD-Lagrange scheme

Paul Larousse1,2, David Dureisseix1, Anthony Gravouil1, Gabriel Georges2

1LaMCoS, UMR5259, Univ Lyon, INSA Lyon, CNRS, 69621 Villeurbanne, France

E-mail: paul.larousse@insa-lyon.fr, david.dureisseix@insa-lyon.fr, anthony.gravouil@insa-lyon.fr

2Centre de technologique de Ladoux, Manufacture Française de Pneumatiques Michelin, 63000

Clermont-Ferrand, France

E-mail: paul.larousse@insa-lyon.fr

Keywords: Contact, Cohesive Zone Model, Symplectic Scheme.

The unmoulding process of a tyre is a fast dynamic problem involving a non smooth interface be-

haviour with contact and decohesion. In previous works, unilateral contact and impact have been studied

in explicit dynamics [1, 2] but no damage nor cohesion were involved. Combining a contact problem

and a thermodynamically motivated damage model within the so-called CD-Lagrange explicit dynamics

scheme is the aim of this work. To do so, the RCCM macroscopic model [3] of adhesion with damage

of the interface is studied. The thermodynamic motivation of the model and the use of a symplectic

explicit scheme creates a framework based on good energy balance property.

Predicting unmoulding tyre process is a motivation for developing numerical simulation tools, and a

robust dynamic scheme is mandatory. Indeed, this process leads to fast dynamic events, such as impacts

and interface fracture, and implicit schemes exhibit convergence issues and/or possibly high numerical

cost, so explicit schemes are of interest. The explicit CD-Lagrange scheme provides interesting prop-

erties due to its symplectic nature, allowing good conservation properties, among which the discrete

energy conservation. The aim is therefore herein to use this scheme as a framework for modeling more

complex interfaces properties in a modular implementation.

To describe a rigid-deformable contact (as between a mould and a polymeric part), the Hertz-

Signorini and Moreau [2] condition of unilateral contact with a frictional Coulomb’s law written in

velocity and impulse are used as in (1), (2) for the normal contact and (3), (4) for tangential contact:

if g > 0, then rc,N = 0, (1)

else g = 0, and 0 ≤ rc,N ⊥ vc,N ≥ 0, (2)

and if g > 0, then rc,T = 0, (3)

else g = 0, and 0 ≤ (µrc,N − rc,T ) ⊥ ||vc,T || ≥ 0, (4)

g is the gap between both solids involved in the contact, vc,N and vc,T are respectively the normal

and tangential velocity, rc,N and rc,T are respectively the normal and tangential impulses and µ is the

friction coefcient.

Our work aim is to add an interface behaviour to the contact. To do so, the phenomena of adhesion

and damage are highlighted. The physical interpretation of damage, especially on interface, is usually

settled at microscopic scale. A macroscopic model is a phenomenological one, aimed to traduce local

behaviours with macroscopic quantities such as a damage parameter [3]. For this study, a macroscopic

model has been chosen to deal with the impact and the damage evolution, as a generalization of the

RCCM model [3]. According to the value of this parameter, the stiffness of the interface is modied,
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the higher is the damage, the lower is the stiffness. Developing a modular framework is therefore useful

for implementation of such models, which is a perspective to the present study. The denition of this

model is given in (5),(6):

if [u] = α and α < ur, α̇ =< vd >+, (5)

else α̇ = 0, (6)

[u] is the relative displacement between both solids, vd for the relative velocity, α the damage pa-

rameter, ur a constant parameter which is the damage rupture and α̇ the damage rate. Only small

displacements are studied herein, but the nature of the explicit scheme, such as the explicit computation

of the structure conguration will bear interesting features for future developments for large displace-

ments and rotations. To solve our problem, a Finite Element (FE) resolution code is used as in Figure (1)

with a test case solution after application of a vertical traction force on the left hand side of the structure.

0 0.405 0.81

impulses - step 1541 in [0,1999]

0 0.637 1.27

displacements - step 1541 in [0,1999]

XY

Z

Figure 1: Mesh displacement (colors) and contact impulses (arrows) during Peeling Test

In conclusion, a modular framework composed of a thermodynamic motivated interface behaviour

implemented in the explicit CD-Lagrange scheme formalism is created to solve contact problems with

cohesive zone models in dynamics.
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In contact mechanics it is very often assumed that the loading is applied to a half space. However, 
this assumption is no longer valid if the contact region is on or very close to the sharp corners. This 
edge effect can be very often observed, for example in rail-wheel contacts, cylindrical bearings, 
gears or connections between turbine blades and discs. In this work, non-adhesive and adhesive 
contacts between a rigid body and an elastic quarter space is studied, where the movement of the 
side surface of the quarter-space is constrained by a rigid wall: it can slide freely along the wall. 
This is the simple case of Hetényi’s contact problem [1][2]: one can obtain its solution easily by 
applying an additional mirror load to an elastic half-space. Numerical simulation is carried out using 
the Fast-Fourier-Transform (FFT)-assisted Boundary element method. In the case of adhesive 
contacts, the stress criterion proposed in [3] is used to determine the detachment of elements at the 
contact boundary, which is derived from the comparison of the elastic energy stored in the element 
with its surface energy. This approach has been extensively validated by comparison with analytical 
solutions. It can accurately reproduce the classic Johnson-Kendall-Roberts (JKR) results for 
Hertzian contact.   

Simulation results show that depending on the position of the indenter relative to the side edge, 
different contact behavior is observed. In the case of adhesive contact, the force of adhesion first 
increases with increasing the distance from the edge of the quarter-space, achieves a maximum and 
decreases further to the JKR-value in large distance from the edge. The enhancement of the force of 
adhesion compared to the half-space contact is associated with the pinning of the contact area at the 
edge. The maps of the force of adhesion and their analytical approximations are provided [4]. 

  

 
Figure 1: Contact area, pressure distribution on the surface and the internal von Mises stress for 

different indenter locations [4]. 
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Predicting and understanding the tribological features resulting from the interplay between adhesion 
and viscoelasticity in sliding and rolling contacts between polymeric materials is a crucial issue in 
many engineering and industrial applications. To mention some examples: bio-inspired and 
biological systems, micro-electro-mechanical systems (MEMS), protective coatings, tire-road 
contact, micro-grippers, structural adhesives, pressure-sensitive adhesives, wear, sealings, 
touchscreens, windscreen wipers. Nowadays, a comprehensive theory of viscoelastic-adhesive 
sliding contacts is still lacking. Indeed, for sliding contacts, existing numerical and analytical 
approaches can predict the unknown contact domain only in adhesiveless conditions or by neglecting 
any viscoelastic effects [1]. Nevertheless, several existing experimental data highlight how adhesion 
might strongly affect the viscoelastic friction developed at the contact interface, both at low [2], 
intermediate, and high relative sliding/rolling velocity [3,4]. At low velocity the bulk of the 
viscoelastic material is excited at very low frequencies, and thus behaves as a soft elastic material, 
but local small-scale viscoelastic losses might still significantly affect the contact behavior, inducing 
an important adhesive frictional contribute (i.e., adhesion hysteresis). This has clearly been pointed 
out in [2], in which the authors report experimental data exploiting the tribological features of rolling 
contacts between rigid cylinders and rubbery-like substrates. One of the most relevant observed 
features is that the effect of local viscoelastic losses is to strongly increase the adhesive properties 
of the system, as the contact interface is able to withstand higher tensile forces with respect to static 
conditions as long as rolling occurs. The interplay between adhesion and viscoelasticity is still 
significant at intermediate and high velocity [3,4]. Specifically, a strongly increased friction 
coefficient with respect to adhesiveless conditions is experimentally measured, which is not fully 
understood yet. A possible explanation is that adhesion increases the contact area and, in turn, the 
amount of material experiencing viscoelastic hysteretic losses within the bulk (i.e., large scales 
viscoelasticity). Nevertheless, the experimental data from the Grosch’s seminal work clearly 
indicate that the overall viscoelastic friction cannot be estimated by linearly superimposing the 
small- and large- scale viscoelastic losses. For this reason, predicting the size of the unknown contact 
area is of primary practical interest.  
In this abstract, we report the results of a novel theory that we recently developed to study the 
adhesive sliding contact between viscoelastic bodies and rigid indenters [5,6]. The unknown contact 
domain is calculated by enforcing a proper energy balance for an infinitesimal contact area variation 
𝛿𝑎  at each edge of the contact, i.e. Eq. (1), which generalizes the Griffith criterium to the 
viscoelastic case: 
 
 𝑑𝑈 + 𝛿𝐿𝑝 = ∆𝛾𝛿𝑎 (1) 
 
where 𝑑𝑈 is the elastic energy variation, ∆𝛾 is the so called Duprè work of adhesion, and 𝛿𝐿𝑝 is 
the non-conservative infinitesimal work done by the internal stress, which is directly related to the 
viscoelastic behavior of the material (vanishing in the case of purely elastic materials). The proposed 
theory provides possible insights into most of the existing experimental evidences. E.g., Fig.1 shows 
the predicted trend of the viscoelastic friction coefficient against the dimensionless sliding velocity 
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(a) and the corresponding experimental curve (b) from Ref. [4].  
 

 
Figure 1: The trend of the friction coefficient against the sliding velocity: comparison between the 

theoretical predictions (a), and experimental data (b).  

The blue line in Fig.1 (a) is the overall viscoelastic friction coefficient. The red line (𝜇𝑎) is the 
adhesive friction coefficient, which is proportional to the quantity 𝐺1 − 𝐺2, being 𝐺1  and 𝐺2  the 
energy release rates at the contact trailing and leading edge, respectively. The quantity 𝜇0 (green 
line) is the viscoelastic friction coefficient calculated in adhesiveless conditions. The predicted 
trends suggest that at low velocity friction mostly originates from the small-scale viscoelastic losses 
(i.e. adhesion hysteresis) as 𝜇 ≈ 𝜇𝑎. In such a range of speeds, a significative viscoelastic-induced 
enhanced adhesion is predicted, in agreement with experimental data reported in Ref. [2]. At 
intermediate and high velocity, the overall friction 𝜇  is highly increased with respect to the 
adhesiveless condition. The figure clearly indicates that 𝜇 ≫ 𝜇𝑎 + 𝜇0  (see black line), thus 
confirming that the small- and large- scale losses cannot be linearly separated. This is a relevant 
result, which indicates that models based on such assumption may fall short in describing the real 
frictional response. Finally, at very-low and very-high velocity, the material behaves elastically, thus 
friction vanishes. The experimental trends from Fig.1 (b) strongly support the theoretical 
predictions: adhesive friction (dashed line) is measured on a smooth sliding glass surface, whereas 
the adhesiveless condition (dot-dashed line) is ensured with a dusted silicon carbide surface; the 
solid line instead, whose trend is very similar to the one predicted by our theory, is the friction 
measured on a clean silicon carbide paper (i.e., a rough surface), and thus takes into account both 
the adhesive and viscoelastic effects.  
 

References 
[1] Putignano, C. and Carbone, G., A review of boundary elements methodologies for elastic and 

viscoelastic rough contact mechanics, Physical Mesomechanics, 17, 321-333 (2014). 
[2] Charmet, J. C. and Barquins, M., Adhesive contact and rolling of a rigid cylinder under the 
    pull of gravity on the underside of a smooth-surfaced sheet of rubber, Int J Adhes Adhes, 16(4), 
    249-254 (1996). 
[3] Roberts, A. D., Looking at rubber adhesion, Rubber Chem. Technol., 52(1), 23-42 (1979).  
[4] Grosch, K. A., The relation between the friction and visco-elastic properties of rubber, Proc. R. 

Soc. A: Math. Phys. Eng. Sci., 274(1356), 21-39 (1963).   
[5] Carbone, G., Mandriota, C. and Menga, N., Theory of viscoelastic adhesion and 

friction. Extreme Mechanics Letters, 56, 101877 (2022). 
[6] Mandriota, C., Menga, N. and Carbone, G., Adhesive contact mechanics of viscoelastic 

materials, J Mech Phys Solids, Submitted (2023). 

28



Numerical simulation for contact problems in crack growth with phase
field approach

Takeshi Takaishi1, Masato Kimura2
1Department of Mathematical Engineering, Musashino University, Japan
E-mail: taketaka@musashino-u.ac.jp
2Faculty of Mathematics and Physics, Kanazawa Univeristy, Japan
E-mail: mkimura@se.kanazawa-u.ac.jp

Keywords: crack growth, phase field, contact surface.

The authors introduced the gradient flow model of crack growth with phase field approach[1] that is
based on the approximated energy of cracked plate with variational approach by Bourdin-Francfort-
Marigo[2] using Ambrosio and Tortorelli’s approximation[3]. Here, we consider the crack growth in
n-dimensional elastic material. Let Ω ⊂ Rn be a bounded elastic body with crack. Let u ∈ Rn be
a displacement, z ∈ [0, 1] be an phase field where z = 1 at cracked region and z = 0 at non-cracked
region. The gradient flow model can be written as follows[1, 4]:






−div
(
(1− z)2σ[u]

)
= f(x, t) in Ω× [0, T ],

αz
∂z

∂t
=

(
ε div (γ(x)∇z)− γ(x)

ε
z + σ[u] : e[u](1− z)

)

+

in Ω× (0, T ].
(1)

where (a)+ = max(a, 0). e[u] = (∇u + ∇uT )/2 is strain tensor, σ[u] is stress tensor. g(x, t) is a
given function of displacement at Dirichlet boundary ΓD. Neumann boundary is set at ΓN = Γ\ΓD.
This model has many advantages for numerical simulation of crack growth: 1) Since the crack path
is automatically selected, branching of the crack path can be expressed, 2) numerical simulation is
performed in a fixed domain, so, there is no need to change the simulation boundaries during crack
propagation, and complex shapes can be handled, 3) suppression of stress divergence at the crack tip by
regularization with small parameter ε(> 0) that represents the characteristic crack witdth, 4) extension
to complex models while maintaing simplicity, e.g., crack growth in viscoealstic material[4].

Phase field can describe the complex crack surface, however, it cannot detect the contact of cracked
surface because it plays the role that excludes elasticity of material. We propose new model that can treat
crack surface with non-penetration condition using phase field . Our new model can treat the contact
condition of crack surface also crack growth in material. The unilateral contact condition proposed by
[5] can be easily included in our gradient flow type phase field model. Here we set ē[u] := e[u] −
1
d (divu)I, then we have σ[u] = β(divu)+I − β(divu)−I + 2µē[u], where (divu)+ and (divu)− =
(−divu)+ are the positive and negative parts of divu, respectively, and we set β := λ + 2µ/d. The
gradient flow model with lateral contact condition can be written as follows[4]:






−div
(
(1− z)2σ̃+[u]

)
= f(x, t) in Ω× [0, T ],

α
∂z

∂t
=

(
ε div(γ(x)∇z)− γ(x)

ε
z

+
(
β(divu)2+ + 2µ|ē[u]|2

)
(1− z)

)

+
in Ω× (0, T ].

(2)
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t = 0 t = 0.05

Figure 1: Defoamation of contacted plate. Displacements on right and left side are u = (−1, 0)t and
u = (1, 0)t, respectively.

t = 0 t = 0.08 t = 0.09

Figure 2: Defoamation of contacted plate with cack growth. Displacements on the right and left side
are u = (−1, 1)t and u = (1,−1)t, respectively.

We calculate deformation of 2 dimensional plate with Dirichlet bounday at the right and left side bound-
aries by FreeFem++[6]. Numerical results of compressive displacement for slanted crack shows the
deformation with slip of the contact surface (Fig.1). Crack growth occurs of the half crack with slip
displacement (Fig.2). Addressing the contact problem using phase field enables us to study deformation
including crack growth in materials with complex crack surfaces.
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The non-smooth approach to contact mechanics has been developed since the 1970s, following the pi-
oneering works of Jean-Jacques Moreau [1], and has lead to many theoretically and computationally
favourable formulations of contact problems, particularly for granular media, such as the contact dy-
namics method [2], in which the bodies are treated as rigid and the fundamental variables of the contact
problem are the velocities before and after contact and the contact percussion. This dynamic formula-
tion (as opposed to a static formulation relying on contact forces and displacements as the fundamental
variables) has many advantageous aspects. A particular benefit of this formulation is that in the case of
a pure normal contact problem, a two-dimensional contact and Coulomb friction problem, or a three-
dimensional contact and friction problem modelled by an interior faceting of the Coulomb friction cone
(following the remarkable contribution of Stewart and Trinkle [3]), the system may be written as a linear
complementarity problem (LCP). This LCP formulation is particularly advantageous, as by exploiting
results on this class of problems obtained by mathematicians, it can be shown that the evolution problem
is well-posed (pure normal contact), or that the solution exists (frictional contact). In addition, the for-
mulation as an LCP allows the problem to be addressed with implicit integration, with its concomitant
benefits in terms of time-step size and thus numerical efficiency.
However, not all contacts can reasonably be described by laws as (conceptually) simple as unilateral con-
tact with Coulomb friction. In particular, many systems have contacts that exhibit a degree of cohesion,
and the formation of cracks in a solid body can also be modelled as the separation of two surfaces ex-
erting a cohesive force on each other [4]. Indeed, this “cohesive zone” approach is regarded as the most
physically accurate way of modelling crack propagation, as it serves to regularise the classical Griffith
model of fracture so that it has finite stresses everywhere (as opposed to the diverging stress fields at the
crack tip of the classical model). Many cohesive zone models (labelled “intrinsic”) have an initial elas-
ticity as the surfaces are drawn apart. This elasticity is physically spurious, and induces a phenomenon
known as artificial compliance, that makes these intrinsic models essentially unusable for modelling dy-
namic phenomena. By contrast, “extrinsic” cohesive zone models do not possess this spurious elasticity
as the surfaces are separated, and instead the cohesion immediately reduces as two surfaces are drawn
apart. Another way of expressing this same idea is that extrinsic cohesive zone models are initially
rigid, which immediately makes obvious the connection with the contact dynamics method. However,
current extrinsic cohesive zone models, while initially rigid, do feature an unload–reload elasticity that
remains physically spurious, and can serve to induce the artificial compliance phenomenon in the case
of complex non-monotonic loading.
As such, we propose a non-smooth unification of contact mechanics with an extrinsic cohesive zone
model. In the first instance, we focus on a purely normal problem (i.e. with only unilateral normal
contact, and only mode I cohesion), where we specify appropriate non-smooth energy and dissipation
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(pseudo-)potentials, from which we obtain our constitutive laws by exploiting the tools of convex anal-
ysis. Then, casting these laws in a dynamic form, we recover the principles of non-smooth contact
dynamics [5], and are able to write our discrete-in-space-and-time problem as an LCP. We prove that
this LCP is well-posed (and thus serves to regularise problems where quasi-static systems would demon-
strate unphysical solution jumps), and further that our numerical integration scheme is dissipative (and
symplectic in the absence of impacts). Comparison with results in the literature demonstrates that we are
able to use orders-of-magnitude larger time-steps, and thus benefit from substantial gains in numerical
efficiency [6].
Generalising further, we then write a model of unilateral contact with Coulomb friction (in two dimen-
sions) that also encompasses mode I and mode II cohesion. Once again, by recasting our problem in
terms of dynamics, we are able to write the discrete problem as an LCP, and prove the existence of a
solution and the dissipativity of our numerical integration scheme.
By writing our problems in such a way, we connect the (otherwise disparate) traditions of non-smooth
contact mechanics and cohesive zone modelling, and extend the domain of contact mechanics by carry-
ing its mathematical tools into the domain of fracture mechanics.
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As contact mechanics problems are locally highly non-linear and non-regular, their numerical 
simulation is computationally challenging. Efficient numerical solutions of such problems often rely 
on adaptive mesh refinement (AMR). Even if efficient parallelizations of standard AMR techniques 
as h-adaptive methods begin to appear [1], their combination with contact mechanics problems 
remains a challenging task. Indeed, current developments on algorithms for contact mechanics 
problems are focusing either on non-parallelized new adaptive mesh refinement methods [2] or on 
parallelization methods for uniformly refined meshes [3]. 

The purpose of this work is to introduce a High Performance Computing (HPC) strategy for 
solving 3D contact elastostatics problems with AMR on hexahedral elements. The contact is treated 
by a node-to-node algorithm with a penalization technique in order to deal with primal variables 
only. Therefore, this algorithm presents the advantages of well modelling the phenomenon under 
study while not increasing the number of unknowns and not modifying the formulation in an 
intrusive manner. Concerning the AMR strategy, we rely on a non-conforming h-adaptive 
refinement solution. This method has already shown to be well scalable [1,4]. Superparametric 
elements are used in order to preserve the shape of hierarchical refined geometries, even for first-
order finite elements solution (see Figure 1). An estimate-mark-refine approach with a local 
detection criterion based on a Zienkiewicz-Zhu (ZZ) type error estimator and a geometric-based 
stopping criterion is applied in order to perform the AMR process [5]. This combined strategy has 
recently proven its efficiency [6]. 

In this contribution, we propose to extend the combination of these contact mechanics and AMR 
strategies to a parallel framework. In order to carry out simulations, we place ourselves in the MFEM 
software [4] environment, an open-source finite elements method library. The proposed scalable 
contact algorithm is first based on a mesh partitioning that guarantees the contact paired nodes to be 
on the same processes. Furthermore, the contact stiffness matrix is locally built. The combined 
AMR-contact algorithm is ruled by two nested iterative loops. The external loop concerns the AMR 
process while the internal one deals with the contact solution. The penalized contact problem is 
solved thanks to a dedicated iterative solver. The iterative contact solution process is performed until 
the set of active contact nodes (detected by interpenetration) does not vary. Once the contact loop 
converged, the AMR strategy is locally applied and the mesh decomposition is rebalanced with the 
previously discussed partitioning contact constraints. Finally, the external iterative process ends 
once the AMR stopping criterion is satisfied. To perform the AMR on the MFEM software, the 
currently implemented h-adaptive method is enriched with our own estimate-mark-refine approach. 

The proposed AMR-contact strategy is first evaluated on the 3D Hertzian contact problem with 
tens of millions of unknowns (see Figure 1). Our HPC approach turns out to be well scalable for 
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hundreds of cores. In addition, with the employed AMR strategy, an optimal mesh, reducing the 
number of unknowns by at least ten compared to an equivalent uniformly refined mesh, is found in 
few AMR iterations. This mesh is automatically refined around the contact area, especially in the 
zones where the contact status changes. Furthermore, our HPC strategy has been successfully 
confronted with industrial test cases derived from the nuclear industry, which confirms the 
potentiality of such approach. 
 

a)   b)  

Figure 1: Parallel AMR-contact strategy for a 3D Hertzian contact (cross-sectional view) :               
(a) initial coarse mesh; (b) Hierarchical AMR with an error threshold of 8%. 
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If the contact between two surfaces is described as "small sliding", only small relative motion occur 
between the two contact partners. This type of contact is of significant technical importance, as it 
occurs in all fixed connections. Examples are: Screwed connections, riveted connections, welded 
connections, press connections, etc. Inside the contact area, state-dependent contact and friction 
forces occur. Depending on the type of structure and type of load, these contact and friction forces 
can have both local and global effects. An example of a local impact would be "fretting" due to 
relative tangential displacement under high normal loads. An example of global impact would be an 
increased damping and load dependent eigenfrequencies of global vibration modes. The first one is 
utilized, for example, in turbine friction belts. 
As shown in [1] the contact and friction forces lead to complex nonlinear phenomena such as load-
dependent natural frequencies and damping and mode coupling. In addition, it was pointed out in 
[2] that the contact and friction forces due to vibrations have a very high variability and "move 
around" in the contact region in a very complex way. Within the contact area, there are 
simultaneously zones in which the contact is open and closed. The zone with closed contact can be 
subdivided again into zones in which there is sticking and sliding. These three zones (open contact, 
sticking, sliding) move through the contact area in a state-dependent manner. Note, that the insights 
of the former mentioned publications [1] and [2] are based on measurements. 
An accurate numerical reproduction of these effects would require a very fine Finite Element (FE) 
mesh. The nonlinear contact and friction forces must be computed considering the current joint state 
and the dynamics needs to be regarded as well. These requirements make the direct application of 
the FE method impossible since it would lead to exorbitantly high computation times. In [1], weeks 
or even years were estimated for the simple structure used there. 
In recent years, the authors and Pichler have developed a method that meets the requirements just 
mentioned with low computation times. The core of the method is (1) the reduced computation of 
the deformations within the contact area via contact modes and (2) the reduced computation of the 
contact and friction forces with contact and friction force modes, respectively. 
For the reduced computation of the contact area a flat projection is used. This means, that the 
deformation of the structure (and the contact area) is computed based on a linear superposition of 
weighted time invariant trial vectors, often called “modes”. The weights are state variables and often 
called “modal coordinates”. There are many proposals for such trial vectors in the literature, such as 
the famous one of Craig and Bampton. All of them have in common that they are able to represent 
global deformations quiet well. However, they are not able to represent local deformations as they 
occur in contact regions. Therefore, such a mode base is extended by so-called contact modes. These 
are computed simulation-free (a-priori) based on modal derivatives. Detailed information can be 
found in [3] and [4]. Recently it was shown in [5] that with this reduction method the measured 
results of [1] and [2] can be reproduced in numerical simulations qualitatively excellent. The 
computation times predicted in [1] with years have been reduced to approx. 25 to 45 min (average 
desktop PC with the 64bit operating system Windows 10 (32GB RAM, Intel(R) Core(TM) i7-3820 
CPU @3.6GHz)).  
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As mentioned, model reduction with contact modes already brings a significant performance gain 
without sacrificing accuracy. However, the contact and friction forces are still computed for each 
FE node. For this, all involved FE node displacements have to be computed from the modal 
coordinates. The finally obtained forces need to be projected back into the modal space. This process 
becomes the bottleneck of the numerical simulation if many FE nodes are involved in the contact 
area. To increase the efficiency of numerical time integration again, the contact and friction forces 
are also computed by a superposition of time invariant trial vectors. In [6] and [7] mathematical 
details about different methods applicable to different contact situations can be found. 
As mentioned before, it was shown in [5] that model reduction with contact modes can reproduce 
all measured nonlinear effects. In this work it is reported that the application of hyper reduction to 
the simulation tasks documented in [5] leads to similar result quality with again reduced computation 
times. From the initially estimated huge amount of computation time just a view minutes remain, 
and all measured effects can be observed in FE result quality. The combination of model reduction 
and hyper reduction makes the approach quasi "mesh - free" since the fineness of the FE meshing 
does not play a role in the dynamic simulation anymore. 
Finally, the potential of the approach is demonstrated by a particle impact simulation of a turbine 
blade rotation with 10000rpm. All contact and friction forces in the friction belt have been 
considered as well as the nonlinear rotation and the dynamics of the structure. The results are in 
good agreement with the expectations and the simulation time is low. 
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The current development of supercomputers motivated the research of massively parallel algorithms
for solving many challenging problems, including huge contact problems of elasticity. Here describe
how to adapt the three-level hybrid domain decomposition method proposed by Klawonn and Rheinbach
to solving multibody contact problems with billions of nodal variables. The basic idea is to decompose
the domains occupied by the bodies into subdomains, use the transformation of variables to join some
subdomains by the rigid body motion of adjacent subdomains into clusters so that each cluster has only
six rigid body modes, and then use the standard FETI (finite elements tearing and interconnecting)
methodology to get well conditioned dual quadratic programming problems with bound and equality
problem which can be solved with an asymptotically optimal (linear complexity). The results of nu-
merical experiments [1]–[4] show the considerable scope of scalability of both H-TFETI (hybrid total
FETI) and H-TBETI total boundary. The observation is supported by fundamental estimates [4]

kSsubdomk � kSclusterk � 1

4m
�min(Scluster) and (Scluster) ⇡ m(Scluster)

giving the bounds on the spectrum of m⇥m⇥m cube clusters in terms of the bounds on the spectrum
of the subdomains’ Schur complements. Table 1 shows that the H-TFETI-DP iterations are very cheap
so that for well-structured discretizations, the unpreconditioned hybrid TFETI method can outperform
the very powerful TFETI-DP with Dirichlet preconditioner

iter/time[sec] iter/time[sec] iter/time[sec]
clusters subdomains unknowns H-TFETI TFETI DirTFETI

27 729 15,000,633 89/27.7 60/17.3 20/40.0
343 9261 190,563,597 105/35.1 59/20.3 19/46.2

4096 110,592 2,275,651,584 104/58.7 na na

Table 1: Billion clumped cube - unpreconditioned H-TFETI and TFETI, and TFETI with Dirichlet
preconditioner (DirTFETI), times include initiation, m = 3, linear problem [4]

The contact benchmark is the same clamped cube over a sinus-shape obstacle as in Fig. 1, loaded by
own weight, decomposed into 4 ⇥ 4 ⇥ 4 clusters, H/h = 14, using the ESPRESO [5] implementation
of H-TFETI for contact problems. We can see that TFETI needs a much smaller number of iterations.
However, H-TFETI is still faster due to 64 times smaller coarse space and better exploitation of the
node-core memory organization. In general, if we use m⇥m⇥m clusters, the hybrid strategy reduces
the coarse problem’s dimension and cost of the coarse problem by m

3 and m
6, respectively.

1
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Clusters Subdomains Cores Unknowns H-TFETI TFETI
⇥106 iter/sec iter/sec

64 4096 192 13 169/23.9 117/24.9
512 72,900 1536 99 208/30.2 152/115.1

1000 656,100 3000 193 206/42.6 173/279.9

Table 2: Clamped elastic cube over the sinus-shaped obstacle, total times, m = 4, Hs/h = 14

Figure 1: Displacements of a clamped elastic cube over the sinus-shaped obstacle

Moreover, the two-level structure of the coarse grids (split between the primal and dual variables)
can be effectively exploited by the node-core design of the modern supercomputers’ hardware. We
conclude that H-TFETI-DP is a competitive algorithm for solving some huge contact problems.
Remark 1. Similar results can be obtained for the clusters of subdomains discretized by the boundary
element and hybrid TBETI method.
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Stabilization of mixed finite element methods for saddle point problems is a well-established technique
that allows one to use finite element spaces that do not satisfy the Babuška–Brezzi condition. They were
introduced and analysed in 80’s by Hughes, Franca, Brezzi, Pitkäranta and others. The analysis has,
however, suffered from the fact that full regularity of the exact solution needs to be assumed.

In this talk, we give an overview of our recent and ongoing work on stabilized FEM for contact
problems. The problems are written in a mixed form, with the contact pressure acting as a Lagrange
multiplier, and the stabilised formulation is derived by adding appropriately weighted residual terms to
the discrete variational forms.

We show that the discrete formulation is uniformly stable and that it leads to a quasi-optimal a priori
error estimate without further regularity assumptions. Moreover, we establish a posteriori estimates
whose optimality is ensured by local lower bounds.

To implement the method, the discrete Lagrange multiplier can be locally eliminated, thus giving rise
to a robust Nitsche-type method. We present a series of numerical results which confirm the optimality
of our a posteriori estimates.
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The focus of this work is an adaptive algorithm for efficient and detailed impact simulations in flexi-
ble multibody systems. Multibody systems allow the efficient analysis of the overall motion of systems,
e.g. in machine dynamics or robotics. Impacts within flexible multibody systems often consist of large
rigid body motions before and after impact. Elastic deformations normally remain small if stiff ma-
terials, e.g. steel or aluminum, are selected. These conditions allow the use of the floating frame of
reference formulation [3], which requires global shape functions of the flexible bodies. Usually, a finite
element model consisting of isoparametric elements in combination with a model reduction is used to
approximate the global shape functions. A disadvantage of isoparametric elements is that the geome-
try is discretized. However, impact simulations depend on an accurate representation of the geometry
in the contact area. As an alternative approach, isogeometric elements can be used where there is no
error in the representation of the geometry. For this reason, the isogeometric analysis (IGA) will be
employed in this work to determine the global shape functions. For a more detailed introduction to the
IGA, see, for instance, [1]. In order to preserve the local deformation of the contact region in the model
reduction, a Craig-Bampton method is used. In a previous work [2], the IGA bodies are reduced with
a Craig-Bampton method resulting in numerically stiff equations of motion despite additionally added
numerical damping. For isoparametric elements, the literature [4] proposes a quasistatic contact model
to solve this issue. In this work, the quasistatic contact model is applied to an IGA model. The contact
model is then paired with a penalty method for contact treatment.
Setting up impact simulations usually requires heuristic testing. A selection of three challenges is listed
below.
Firstly, the required penalty factor is determined heuristically. Thereby, the penalty factor should be
chosen large enough such that the results become independent of the chosen parameter.
Secondly, the bodies in contact need to be refined in the contact area. In practice, this area is very small
and requires a high element resolution. If the refined area is too large, the computation time increases.
If the refined area is too small, the impact cannot be fully resolved.
Thirdly, the location of the contact area must be known prior to the simulation. In the simplest case, the
impact starts in the first time step. However, if large rigid body motions, e.g. rotations, occur prior to
the impact, the setup becomes more challenging.
Therefore, the aim of this work is to develop an algorithm to incorporate adaptivity into the setup of im-
pact simulations. Thereby, the penalty factor, the location and width of the contact area are determined
automatically.

Usually, an impact can be divided into three phases: the pre-impact phase, the impact phase and the
post-impact phase. In the pre-impact phase, the elastic eigenmodes are not yet excited allowing larger
step sizes. In contrast, the impact phase requires the smallest step sizes due to high impact dynamics.
In the post-impact phase, larger step sizes are feasible again. Switching between the phases can be
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achieved by minimizing the search function

fs(⇠C, ⌘C, ⇠T, ⌘T) = kxC(⇠C, ⌘C)� xT(⇠T, ⌘T)k, (1)

where xC and xT are points on the contact and target body at which the two bodies are the closest. The
local coordinates of the IGA are denoted by ⇠C, ⌘C, ⇠T and ⌘T. Minimizing Eq. (1) gives the time and
location of the impact. This contact search can be found in Fig. 1, where the concept of an adaptive
impact simulation is visualized.
The impact phase uses a quasistatic contact model [4] to evaluate the penalty based contact. In practice,
the solution of the quasistatic contact equations fails for a penalty factor beyond its converging value.
This property is used to adaptively determine the penalty factor iteratively. After the impact simulation,
the elements in contact are identified and the contact area is adaptively adjusted. If required, the simu-
lation is repeated to validate the newly refined mesh. Finally, in the post-impact phase, large rigid body
motions can be simulated, and further impacts may occur.

As an application example, a planar setup consisting of two cylinders is simulated. The initial
distance, as well as the translation and rotational velocity can be chosen arbitrarily. This setup includes
large rigid body motions in the pre-impact phase, where the location of the impact is unknown before
the simulation begins. The application example is therefore well suited to test the adaptive contact
algorithm.

coarse mesh
pre-impact simulation

if fmincon(fs) ⇡ 0
contact search:

!stop time integrationcoarse mesh
post-impact simulation

refined mesh
impact simulation

if fmincon(fs) ⇡ 0
contact search:

!stop time integration

penalty
adjust

factor
impact simulation

if required:

refined mesh
refined
adjust

model

Figure 1: Concept of the time simulation
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Unilateral contact and friction in multibody dynamics systems present a complex challenge. The
representation using unilateral constraints and Coulomb model forms the classic friction cone and gen-
erally results in a nonlinear complementarity problem (NCP). One common approach to address the
nonlinearity is to use a faceted approximation of the friction cone. However, due to the fact that in
the tangential plane there are only two independent directions, any representation that uses more than
that for the base vectors will introduce an artificial redundancy problem. To overcome this issue, the
so-called box friction model can be used [1]. This model associates each contact point with one nor-
mal force and decomposes the friction force along two orthogonal directions in the tangent plane. This
results in a linear complementarity problem (LCP).

Two categories of methods for solving LCPs can be distinguished: iterative and pivoting. Iterative
methods, such as the Projected Gauss-Seidel method (PGS), the Projected Jacobi method, and the PGS
subspace minimization method, solve LCPs through a series of Gauss-Seidel iterations and converge to
an approximate solution. These methods usually do not find an exact solution for the problem as they
do not check the complementarity condition. On the other hand, pivoting methods, such as Lemke’s
algorithm, Murty’s algorithm, and Judice’s algorithm, pivot complementarity variables among separated
ranges defined by complementarity conditions and search for a feasible solution [2]. These methods
were generally developed for the mathematical problem of LCPs without considering the physical nature
of contact problems.

Despite the existence of numerous methods, the force coupling issue remains a common challenge in
solving contact problems. Many of these solution algorithms consider the contact formulations as pure
mathematical problems, and treat normal and friction forces as separate variables and require given
bounds to define the complementarity conditions. However, the bounds of the friction force depend
on the normal force, which is unknown and must be solved concurrently with the friction forces. The
conventional approach for addressing this issue is to estimate a value for the normal force in the first step
before applying the solution algorithm for the LCP. However, this process typically involves repeated
iterations, which can introduce additional errors and computational costs.

This paper presents a novel algorithm for complementarity problems, which can overcome the chal-
lenge of force coupling in more accurate and efficient way compared to other algorithms. It is partic-
ularly devised for the contact problems in multibody dynamics systems. The method falls under the
pivoting category. The main concept behind the method is to pivot complete contact points instead of
individual force components. This approach preserves the force coupling relationships and enables the
simultaneous resolution of both normal and friction forces without the need of per-imposed bounds.
The high-level architecture of the method is presented in Fig. 1 and consists of three stages: grouping,
solving, and pivoting.

At a given time, a contact point can be classified into ten different groups based on its physical
motion. These groups comprise movement in the normal direction: either toward or away from the
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constraint plane, as well as movement in two tangential directions: positive sliding, locked, or negative
sliding. The objective of the grouping stage is to initialize a group configuration variable g, which re-
flects the distribution of all contact points among these groups. Once the groups have been identified,
the free (basic) and tight (non-basic) variables associated with each contact point can be determined.
The free variables are unknowns that lie within the defined bounds, while the tight variables are known
values at either zero or the bound. For example, in a group associated with negative sliding along the
x-axis, the friction force is a tight variable that is at its upper bound, whereas the velocity would be a
free variable with an unknown negative value.

Figure 1: Algorithm flowchart for the proposed method

The solving stage is to substitute the tight varaibles into the LCP formulation and solve for the
free variables. However, the formulations cannot be solved directly due to the issue of force coupling.
To address this, a four-step process has been established, which includes tight force elimination, tight
velocity separation, free variable solving, and index restoration. These steps iterate over each contact
point, resolve the force coupling relations, and obtain a solution for all complementarity variables.

The pivoting stage involves pivoting the contact points by comparing the solution obtained in the
solving stage with the specified bounds of the free variables. Special rules have been developed to
ensure that the points are effectively pivoted among the ten groups. The process outputs an updated
group configuration variable, g+, along with the total count of infeasible points, nf . The proposed algo-
rithm iterates between the solving and pivoting stages until a solution that satisfies the complementarity
conditions is achieved.

To illustrate the proposed method, examples of rigid body contact systems were considered. The
simulation results using the proposed algorithm were compared to those obtained using the Judice’s
algorithm. The results demonstrate that the proposed method can give significant improvements in both
efficiency and accuracy, with a reduction of over 30% in computational time and a substantial increase
in the accuracy of the simulation results.
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Dynamic simulation of multibody systems, in particular when including contact, has many applica-
tions from robotics to vehicle design to haptic systems. However, simulation of very large systems can
impact performance, and many methods have been employed to simplify or parallelize the contact prob-
lem over multi-core processors [1]. Substructuring involves splitting the multibody system into smaller
subsystems of bodies which are solved in parallel. The Schur complement method uses the effective
mass of the subsystems to incorporate the internal dynamics of the subsystems into the solution for the
interface constraints [2]. In this way, the internal constraints of each subsystem can be solved in parallel
to further reduce computational time. To assign bodies to a subsystem, local topological information
about the corresponding body-constraint graph has been used, where bodies are nodes and constraints
between bodies are represented by edges. A minimum degree algorithm grows subsystems from bodies
with the lowest degree. Using only topological information, such as the degree of a body, will gener-
ically exhibit a lot of degeneracy in the subsystems generated. For example, a simple chain exhibits
degeneracy because bodies each have degree two, as every body is connected to two other bodies.

We investigate whether incorporating dynamical information about the interactions beween bodies
in a multibody system may help lift these degeneracies, while also giving a physically motivated basis
for choosing which bodies belong to which subsystem. We consider the case where the body-constraint
graph has edges with weights which contain information about the constrained interactions between
bodies, not just the graph topology (i.e. a topological metric, abbreviated here as TM). Our criteria
for determining whether two bodies are put into the same subsystem is that high-complexity interac-
tions should generally be grouped together. To measure complexity, we use spectral information from
a wavelet anlaysis using the time scales involved in interactions between two bodies (i.e. a multiscale
metric, abbreviated here as MSM). An interaction here is chosen to be the physical power associated
to generalized, relaxed constraint forces. Wavelet methods provide a way of quantifying multiscale be-
haviour in dynamical systems that exhibit non-stationarity, which is characteristic of multibody systems
with contact. Figure 1(a) shows an example of the temporal profile for the physical power of a bilateral
constraints in a multibody system. We introduce a novel metric which incorporates multiscale wavelet
coefficients to develop a dynamics-based formulation of substructuring.

We apply our partitioning metrics to two use cases: a monolithic simulation of a twisting composite
chain and of a parachute mechanism with an applied force. The composite chain is constructed to be
highly symmetrical to demonstrate the usefulness of our method in resolving degeneracies. We also
consider an asymmetrical assembly resembling a parachute, which also consists of bodies that have
large mass-ratios. We choose which bodies are part of a subsystem based on a monolithic simulation,
since this can be done offline. At each time step, a MSM is assigned to each edge (i.e. interaction)
on a body-constraint graph of each case, then a minimum cut algorithm [3] is used to grow partitions,
generally putting bodies with large MSM values in the same partition. To determine a final partitioning
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(a) (b)

Figure 1: (a) Example wavelet spectrum based on the power of a generalized, relaxed constraint from a
bilateral constraint. (b) Dynamics solve time for the twisting composite chain.

for the whole monolithic simulation, how often two bodies were put in the same partition at each time
step is used. Our method shows strong potential to be able to partition multibody systems to improve
dynamics solve times.

Figure 1(b) for the symmetrical, twisting composite chain shows improvements in the dynamics
solve times for the MSM-based partitioning scheme compared to a TM scheme that uses the degree of a
body to partition. We find a reduction in the mode of the dynamics solve time by 18% and in the mean
by 1.24% when dynamical information is included. The complexity of the contact interactions in the
twisting chain adds to the multiscale behaviour since there are sliding contacts with relative motion due
to the applied torque which twists the system, breaking ties. For the asymmetrical parachute mechanism
a reduction in the mode of the dynamics solve time by 8.77% and in the mean by 6.96% is observed.
The MSM provides more of a semantic partitioning (i.e. bodies that make a chain are put together)
compared to using a TM, which may be due to more complex bilateral interactions in a chain of the
parachute.

Adding dynamical information can help remove topological redundancies in assigning bodies to
groups, which we find can lead to improvements in the performance of multibody simulation. Our study
demonstrates that using the dynamics, as encoded by the interactions between bodies, is an important
avenue to investigate when grouping bodies for parallel computation.
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For some time, mortar methods have been the preferred modeling approach for surface-coupled

problems with non-matching grids, as they provide high accuracy and variational consistency. The con-

siderable additional numerical effort introduced by the evaluation of the mortar integrals (especially in

three dimensions) requires an efficient and parallelizable framework, that scales well on parallel hard-

ware architectures and is, thus, suitable for the solution of high-fidelity models with potentially several

million degrees of freedom. Further challenges present themselves in the efficient solution of the arising

system of linear equations on parallel computing clusters.

Although mortar methods have been particularly popular in contact mechanics, the efficiency of the

computations has only recently been targeted and many opportunities for improvement remain.
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x
(1)
0

n0
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Quadrature on inte-

gration cells

Figure 1: Evaluation steps of the mortar integrals to be performed in every nonlinear iteration [1]

When targeting a fast time-to-solution of mortar-based contact simulations, two components of the

simulation play a decisive role:

1. Due to the large size of the linear system, which increases even further when using discrete La-

grange multipliers to enforce the contact constraints, direct solvers cannot be used anymore and

iterative solvers with effective preconditioning are required. In many application cases the linear

solver dominates the time-to-solution. It has recently been shown that aggregation based algebraic

multigrid (AMG) methods can be used as highly efficient and scalable preconditioners for mortar-

based contact problems in saddle-point formulation [2]. The proposed AMG method preserves

the contact constraints and the saddle point structure on all multigrid levels, thus accelerating the

convergence of the iterative linear solver.
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2. Since the computational effort to evaluate the mortar integrals is solely related to the slave side of

the contact interface, the workload may potentially be concentrated on very few processors, de-

pending on the distribution of the interface discretization (see Figure 2). Dynamic load balancing

of core kernels, as proposed in [1], allows for a parallel evaluation of mortar operators and their

linearizations. The independent redistribution of the interface discretization becomes increasingly

important for contact problems with evolving contact zones and can lead to a significant reduction

of the time-to-solution of the contact evaluator.

Figure 2: Rolling contact with concen-

trated mortar workload
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block system in contact simulations

This contribution discusses recent findings on the combined application of AMG and dynamic load

balancing techniques to mortar-based, large deformation contact formulations. Although weak [1][2]

and strong scaling [1] has been proven for the methods individually, the scalability of the interplay of

AMG and dynamic load balancing has yet to be studied and will be presented. We will assess the effect

and potential speedup of the HPC framework through the proposed methods in a high fidelity contact

simulation.
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Helically wounded steel wires in tension and bending are widely encountered, especially in the en-
ergy and power transmission fields, e.g. mooring lines for floating offshore wind turbines (FOWT) or
overhead electrical conductors. The life prediction of such structures involving fretting fatigue phe-
nomena between their constituent wires is crucial. However, wire-scale simulations for complex and
multiple loads requires effective computational and modeling strategies. Examples include the use of
wire models and beam-to-beam contact algorithms [1] or the use of homogenization techniques [2].
Model reduction techniques and multi-scale domain decomposition methods (DDM) are investigated
here in order to appreciate their ability to deal with this particular class of problem.

Model reduction for frictional contact problems is a challenging issue mainly due to the non-linear
and non-regular character of frictional phenomena. It is indeed difficult to represent rapid changes in
contact status and complex propagative phenomena of sliding/sticking zones as well as their strong mul-
tiscale content. Few works exist in the literature. Among them, one can cite a posteriori approaches with
reduced basis enrichment such as the non-negative matrix factorization method [3] or the cone-projected
greedy algorithm [4]. Among a priori methods that build the reduced basis on the fly throughout the
computation by a progressive Proper Generalized Decomposition (PGD), one can cite the works devel-
oped in the framework of the non-incremental nonlinear solver called the LATIN method [5] and its
application to contact problems [6, 7]. In this case, the resulting algorithm shares similar features with
augmented Lagrangian methods known for their robustness in dealing with frictional contact problems
[8]. The main difference with the LATIN method comes from the fact that, unlike classical incremen-
tal nonlinear solvers, an iterate of the solution is generated at each iteration over the entire space-time
domain, which makes this method particularly suitable for a space-time separate representation of the
solution for PGD model order reduction.

In this presentation, an SVD analysis of simulation results from [9] for a metric length of wire rope
belonging to a FOWT mooring line is first proposed to illustrate its reduction potential. The analysis
of contact quantities performed layer by layer for the spiral strand wire rope, shows that quantities for
the outer layers where slip occurs mainly due to bending are more difficult to represent with a reduced
order model. It is also more difficult to accurately represent frictional contact forces than normal contact
forces and slip. The multiscale content of the problem (global modes corresponding to the wire rope
tension and bending and local modes corresponding to contact and friction between wires) suggests that
the use of multiscale methods may be beneficial.

In a second step, a model reduction method by PGD combined with the nonlinear solver LATIN is
used on a simple one-dimensional problem which is a simplification of the loading seen by a constituent
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wire of a wire rope. It is shown that the reduction potential depends closely on the importance of the
sliding front propagation (see Figure 1). Sorting the reduced basis and controlling its size using an
appropriate downsizing algorithm is also crucial to recover optimality with respect to SVD [7].

Figure 1: SVD analysis of sliding displacement and frictional force for a one-dimensional problem
when the sliding front propagation is important (a) and less significant (b)

Finally, the LATIN-based multiscale mixed DDM with PGD [6] is applied to a two-dimensional problem
representative of the targeted application. It is shown to what extent the DDM coarse problem and the
introduction of the PGD, which builds reduced basis per subdomain, are able to effectively represent the
multiscale content of the problem.
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We analyze a non-clamped dynamic viscoelastic contact problem involving thermal effect. The precise

description of the problem is following.

A viscoelastic body, in its reference configuration, occupies a bounded domain ⌦ ⇢ Rd
, d = 2, 3

with a Lipschitz boundary �, consisting of two parts �N and �C , such that �N \ �C = ;. Let ⌫ denote

the unit outward normal vector to the boundary �. The part of the boundary �C is subject to contact

with a foundation. We are interested in a mathematical model that describes the evolution of body

displacement, stress, and temperature. Let T > 0 be given, and let [0, T ] represent the time interval.

In what follows, we denote by x 2 ⌦ and t 2 [0, T ] the spatial and temporal variables, respectively.

We denote by u = (ui(x, t)), � = (�ij(x, t)) and ✓ = ✓(x, t) the displacement field, the stress field,

and the temperature field, respectively, which are assumed to satisfy the following constitutive law (for

simplicity, we omit the symbols x and t below)

� = A("(u̇)) + B"(u) + C✓ in ⌦⇥ (0, T ). (1)

The symbols A, B and C in (1) represent the viscosity operator, the elasticity operator, and the heat

expansion tensor, respectively.

The process is assumed to be dynamic, hence the equation of motion takes the form

⇢ü = Div� + f0 in ⌦⇥ (0, T ), (2)

where ⇢ is the density of the material and f0 is the density of the volume forces. We assume that the

traction force is applied at �N , that is,

�⌫ = f2 on �N ⇥ (0, T ). (3)

The normal compliance condition is described by relation

��⌫ = p(u⌫) on �C ⇥ (0, T ), (4)

where p⌫ is a given nonnegative function which vanishes when its argument is negative. Moreover, we

assume that the frictional law takes the following multivalued, possibly non monotone form

��⌧ 2 @j(u̇⌧ ) on �C ⇥ (0, T ), (5)

where j is a locally Lipschitz function, and @j stands for its Clarke subdifferential; see [1] for details.

In our model we assume a simplified and linearized version of the energy law that takes the form

⇢cp✓̇ � div(Kr✓) = cij u̇i,j + g on ⌦⇥ (0, T ), (6)
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where cp is the heat capacity, K is the thermal conductivity operator, and g represents the heat sources.

We assume that the heat transfer between body and foundation is described by the law

�Kr✓ · ⌫ = �r(✓)� h(ku̇⌧kRd) on �C ⇥ (0, T ). (7)

Finally, we impose initial conditions

u(0) = u0, u̇(0) = u1, ✓(0) = ✓0 in ⌦. (8)

Our mechanical problem reads as follows.

Problem PM. Find the displacement u:⌦ ⇥ [0, T ] ! Rd
, the stress �:⌦ ⇥ [0, T ] ! Sd and the tem-

perature ✓:⌦⇥ [0, T ] ! R that satisfy conditions (1)-(8).

Problem PM, in its variational formulation, leads to a coupled system of hyperbolic inclusion for

displacement and a parabolic equation for temperature. We provide a fully discrete approximation of

the studied problem and find optimal error estimates between the exact solution and the approximate

one.

Our result provides a generalization of the one obtained in [2]. In contrast to the model studied there,

we deal with the non-clamped body, which introduces an additional difficulty to the problem. Moreover,

our result is obtained without any smallness assumptions on the data of the problem, which was the case

in [2].
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The solution of contact problems is often time consuming because of the non-linearity and non-
regularity of the contact constraints. For contact problems treated by Lagrange multipliers (ensuring
the Signorini contact conditions to be respected), applying reduced-order modeling remains challenging
due in particular to the non-negativity constraint on the Lagrange multipliers [1, 2].

We focus here on the Hybrid Hyper-Reduction (HHR) approach for frictionless elastostatic contact
problems proposed in [1, 3]. This approach is based on a reduced integration domain (RID) built through
a discrete empirical interpolation method as described in [4]. A reliable reduced dual basis is obtained by
restricting the full order dual basis to the RID. The HHR model preserves the saddle-point formulation
of the Lagrange multipliers method, and allows the verification of the Signorini conditions inside the
RID (without projection). Numerical experiments proved the capacity of the HHR method to provide
accurate results both for the displacement and the Lagrange multipliers solutions [1, 3], even for large
parametric spaces [3].
In this work, we introduce a priori and a posteriori estimators of the HHR method, providing error
bounds to quantify the discrepancy between the HHR and FE (Finite Element) solutions. Thanks to the
hybrid formulation of the HHR model, a Cea-like primal bound is obtained on the RID (see Figures 1a
and 2a). Indeed, the FE-like dual reduced basis hybrid enables the corresponding bounding term to
vanish. Classical Brezzi-like analysis leads to bound the dual approximation error by the primal one
(see Figure 1b).
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(a) A priori primal error bound
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(b) Dual error bounded by the primal error

Figure 1: Error bounds on the RID for the Hertz’s half disks test case
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Hence, the final a priori error estimators for both primal and dual errors, depend on the distance
between the primal FE solution and the HHR primal approximation space only. Furthemore, an a priori
primal error bound can be derived on the whole computational domain, following Cea’s lemma for
Petrov-Galerkin formulation (see Figure 2b).

(a) On the RID. (b) On the whole domain.

Figure 2: A priori primal error bounds for an industrial test case with 2 parameters.

Primal and dual a posteriori error estimators (depending only on HHR solutions) are also introduced
to propose certified HHR error bounds, useful in particular for a efficient greedy snapshot selection.
These estimators are based on the HHR equilibrium and constraints equations residuals and will be
introduced in the light of those already present in the literature for ROM methods on mixed problems [1,
5, 6].
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approximations
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In the context of decision-making and design optimization of mechanical or structural assemblies,
reduced contact mechanics models are important for resolving the mechanical behaviour in real time.
However, Reduced Order Modelling (ROM) of parametric contact mechanics problems is a recent topic
of research. Additional challenges appear in reducing such inequality-constrained minimization prob-
lems, such as finding a non-negative reduced basis for contact pressure. Though the traditional ideas of
ROM have been applied in this context [1], the local nature of contact and the consequent irreducibility
hasn’t been addressed sufficiently. The assumption of linear separability does not generally apply to the
contact pressure field, thereby limiting the effectiveness of a low-rank basis [2].

In this work, over-complete dictionaries have been used to mitigate the irreducibility effects of fric-
tionless non-adhesive contact problems. The idea is to populate the dictionary with a large number of
contact pressure snapshots generated by the high-fidelity (finite element) model. Without attempting to
extract a reduced basis, the dictionary is directly used to reconstruct instances by seeking only a few
snapshots from the dictionary that approximate the contact pressure field closely. Therefore, the idea of
a sparse coefficient vector becomes central to the approximation strategies.

Two strategies are devised using sparse approximation ideas. The first is based on an active-set
approach, in which dictionary snapshots are selected greedily. The second one is based on convex-hull
approximations, where the idea is to naturally satisfy the constraints [3] by limiting the solution space
to a convex region.
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Parallel, High Performance Contact Solvers
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Phenomena involving two objects coming into contact are ubiquitous in science and engineering, often
forming part of complex multiphysics problem. At the same time algorithms for computational contact
mechanics are notoriously difficult to implement and only very few results regarding scalability of the
algorithms in parallel are available. Our goal is to develop a scalable and robust implementation for
frictional contact problems as an open-source extension to the FEniCSx framework. The motivation
for our work is the modelling of contact between components within a jet engine in the context of the
thermo-mechanical modelling of the engine. The overarching goal to achieve a high-fidelity simulation
of a jet engine in operation including the effects of thermo-mechanics, electromagnetics, and computa-
tional fluid dynamics. The problems we are interested in are therefore first and foremost characterized
by the requirement of a vast number of degrees of freedom as well as complex geometries, complex
material models and complex interactions with other aspects of the model. Figure 1 shows one of our
test problems that is both sufficiently simple and, at the same time, representative of some of the features
we encounter in realistic geometries.

Figure 1: Simple test problem
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FEniCSx [1] is the most recent version of FEniCS, an open source software for solving partial
differential equations based on finite element methods. One of the most attractive features of FEniCS
from the user perspective is the so-called Unified Form Language (ufl) which allows the user to express
the PDE in a notation very close to mathematical notation. One major challenge is that integrals on
the contact surfaces typically cannot be expressed as a ufl-form. In our implementation, we combine
custom integration kernels on the contact surfaces with automatically generated kernels based on ufl-
forms for all remaining integrals in order to leverage the convenience of ufl for all remaining aspects
of the thermo-mechanical model. Currently, we implement Nitsche’s method based on [2, 3] to enforce
the contact constraints, but in principle other methods, such as Lagrange multiplier methods, can be
implemented in a similar fashion. We investigate the scalability of our implementation in parallel as
well as the robustness of the iterative linear solvers we employ.
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The presented work is being conducted as part of the research activities on the protection of public 
spaces against vehicle ramming attacks. In this context, developments are being implemented in the 
EUROPLEXUS [1] software so that it can be efficiently used for virtual testing of security barriers 
(see also [2]). One of the key ingredients for simulating an impact of a vehicle on a barrier concerns 
the chosen contact-impact algorithm, which is applied to a large number of interactions between the 
vehicle and the barrier components. 
 
In fact, the field of crashworthiness simulation has benefitted from an active research since decades 
and has attained a certain maturity, becoming a common engineering practice for various 
applications, i.e. those concerning passengers’ safety. Therefore, there exist several computer codes 
capable of conducting numerical simulations of most impact and crash situations encountered in 
practice. The majority of them are based on the explicit central difference time integration scheme, 
very convenient for a broad field of fast dynamics, combined with state-of-the-art constitutive laws 
to represent the structural behavior under extreme loading. 
 
For the modelling of the contact-impact interaction, most of the software use the so-called penalty 
methods, which are very convenient from the perspective of implementation and of computational 
cost. As stated in [3], the principle of the penalty method implies that the contact impenetrability 
condition is satisfied only approximately, achieving a more precise fulfilment using stiffer penalty 
parameters. This makes penalty methods generally not consistent (see [4]) within the variational 
formulation of the problem and the final matrix form is ill-conditioned. 
 
The contact stiffness related parameters used in penalty methods are determined by 
experience-based rules of thumb, which are problem dependent and without any sound theoretical 
framework for their application to an arbitrary contact configuration. For these reasons, the 
EUROPLEXUS software (see [1], [5]) offers the possibility to use the method of Lagrange 
multipliers for the modelling of contact constraints, in addition to the penalty method. 
 
Following a standard implementation of Lagrange multipliers method for transient mechanics, the 
contact is considered as a kinematic constraint activated when a penetration between the surfaces 
submitted to the contact condition occurs (see [6]). However, this standard approach is analogous to 
the principle of inelastic shock and leads to a numerical energy dissipation, which can be very 
significant in some situations. In this communication is presented an alternative implementation of 
the Lagrange multiplier method (see [7]), which avoids the numerical energy dissipation, by 
adopting the approach presented in [8] for rigid multi-body collision dynamics. According to [8], 
instead of applying a kinematic condition between the contact surfaces, the energy conservation is 
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imposed explicitly. The implementation of the alternative Lagrange multipliers method is very 
simple and does not impact the computational cost. 
 
In the present communication the difference between the standard and the proposed alternative 
Lagrange multiplier methods is demonstrated on several numerical examples. It is worth stressing 
that in many situations the energy dissipated due to the standard contact algorithm is very small and 
the difference between the two methods is negligible. However, in some cases, the numerical energy 
dissipation due to the contact algorithm can exceed 10%, which is largely unacceptable for most of 
contact-impact applications.  
 
One of such examples is the elastic shock of a tube-like vehicle component against a rigid wall. In 
that case, even though the overall response of the structure rebounding from the rigid wall is very 
similar for both algorithms, the energy comparison reveals a significant discrepancy between the 
results (see Figure 1). Namely, in spite of the absence of any dissipative mechanism (the impacting 
structure is considered elastic and the impacted wall rigid), the standard version of the contact 
algorithm leads to dissipation of almost 15% of the initial total energy, which is completely avoided 
by the new algorithm. Beside the effect on the energy conservation, the contact algorithm can also 
influence the stress distribution, as it will be shown on other examples during the conference 
presentation.  

 

Figure 1: Tube-like vehicle component hitting a rigid wall. The difference between the standard 
(black) and the new (red) algorithms is clearly observable in terms of the total energy.  
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We are interested in numerically solving the problem of Coulomb’s friction with unilateral contact,
in dynamics and in quasi-statics. Many methods are already available in the literature to solve this
problem [1]. When the discrete reaction forces are uniquely defined, nonsmooth Newton techniques are
very efficient and the method of choice to reach high accuracy solutions. In the case of hyperstaticity,
for instance, in rigid multi-body systems, robotics or granular materials, nonsmooth Newton methods
fail most of the time. The fallback technique is then first order technique for which is sometimes difficult
to get tight accuracy. In this work, we propose an interior point method to remedy this problem, getting
high accuracy solutions even in the hyperstatic case.

We aim to study in a d-dimensional space a mechanical system of unilateral contact between solid
bodies with m degrees of freedom. The dynamical system is discretized in time and space. Two models
are then formulated: frictional contact problem (d = 3) and friction problem with rolling resistance at
contact (d = 5). The first one will be mainly presented in this talk.

A triplet of unknowns describes the mechanical system: the generalized velocities v 2 Rm, the
impulses of n contact points are concatenated in a vector r := (r1, . . . , rn) 2 Rnd and the relative
velocities u := (u1, . . . , un) 2 Rnd at these contact points. Let us introduce a cone K =

Qn
i=1 Ki, each

Ki is the second-order cone of friction coefficient µi 2]0,+1[ defined by

Ki := {x 2 Rd : kxTk  µixN},

where the subscripts N,T stand for normal and tangential components of the vector. The dual cone of
K is defined by K⇤ :=

Qn
i=1 K⇤

i , each K⇤
i is given by

K⇤
i = {y 2 Rd : µikyTk  yN}.

Let us define the vector ẽ concatenated by n unit vectors e := (1, 0, 0)> and let i 2 {1, . . . , n}. In the
view of the method proposed by De Saxcé [2], we perform a change of variables ũi = ui + µikui,Tke,
to obtain a reformulation of Coulomb’s law, known as a second-order complementarity condition

K⇤
i 3 ũi ? ri 2 Ki.

The new variable ũ is joined by vectors ũi in order. The Coulomb frictional contact problem is formu-
lated as a conic complementarity problem given by

Mv + f = H
>
r,

Hv + w + '(s) = ũ,

K⇤ 3 ũ ? r 2 K,

si = kũi,Tk, i = 1, . . . , n,

(1)

1
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where ' : Rn
+ ! Rnd is defined by '(s) = (s1, 0>d�1, . . . , sn, 0

>
d�1)

>. The given data are: a symmetric
positive-definite matrix M 2 Rm⇥m, f 2 Rm, H 2 Rnd⇥m and w 2 Rnd. Acary et al. [3] showed
the existence of a solution to (1) under an assumption. This problem (1) is straighforwardly obtained
when the linearized dynamics is discretized. In linearized quasi-statics, it also possible to formulate a
problem of this form [4].

As we say above, in the literature, there are some applications [5, 6, 7] dealing with problems relevent
to (1) for full-rank matrix H . For the case of rank deficiency, the Newton semi-smooth approach does
not work with some of the experiments performed. Therefore, we want to find an alternative algorithm
that can give a high-precision numerical solution of (1) no matter how the rank of H is.

It is shown that the system (1) can lead to an optimization problem parametrized by s. We want to
develop an interior-point method to solve such a problem. The complementary condition in (1) can be
rewritten as a form of Jordan product u � r = 0 [8]. A perturbed formulation of (1) is then given by

Mv + f = H
>
r,

Hv + w + '(s) = ũ,

ũ � r = 2µẽ,
si = kũi,Tk, i = 1, . . . , n,
(ũ, r) 2 int(K⇤)⇥ int(K),

(2)

where the parameter µ is driven to zero. We will show that (2) has a unique solution for all µ > 0. Then,
(2) defines a curve of solutions, called the central path, which is bounded and converges to the solution
of (1) as µ ! 0. The results of numerical experiments will be presented to validate our approach.
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The objective of this presentation is the modelling and the numerical simulation of the response of
elastoplastic structures to impacts. To this end, a numerical method is proposed that takes into account
one-sided contact (Signorini condition) and impact phenomena together with plasticity in a monolithic
solver, while accounting for the non-smooth character of the dynamics.

The formulation of the plasticity and the contact laws are based on inclusions into normal cone
of convex sets, or equivalently, variational inequalities following the pioneering work of [3] and [1],
who introduced the assumptions of normal dissipation and of generalised standard materials (GSM) in
the framework of associated plasticity with strain hardening. After a standard FEM discretization, a
differential variational inequality in terms of measures under the small strain assumption is obtained:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Mdv +B
>
�(t)dt = fext(t)dt+H(u(t))diN

u̇(t) = v(t)
�(t) = E("(t)� "

p(t))
a(t) = �D↵(t) 
"̇
p(t)
↵̇(t)

!
2 NC

 
�(t)
a(t)

!

vN(t) = H
>(u(t))v(t)

�diN 2 NTIRm
+

(gN(t))(vN(t) + ev
�
N (t)),

(1)

where u is the displacement, v is the velocity, dv the acceleration measure, diN the contact impulse
measure, � is the Cauchy stress, " the strain, "p the plastic strain, ↵ the hardening parameter, a the
hardening forces, gN the gap function, vN the relative normal velocity at contact and e the coefficient of
restitution. The definition of matrices are classical: M is the mass matrix, B the equilibrium matrix, H
the contact Jacobian, E the elasticity matrix and D the hardening matrix. The interior of the set C(�, a)
is the domain of stress and hardening forces where the material is elastic.

The proposed time–stepping method is an extension of the [2] scheme for nonsmooth dynamics.
Using the relation xk+✓ � xk = ✓(xk+1 � xk), the discretized equations can be formulated in terms of
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variables approximated at tk+✓

8
>>>>>>>>>><

>>>>>>>>>>:

M(vk+✓ � vk) + h✓B
>
�k+✓ = h✓fext,k+✓ + ✓HpN,k+1

S(�k+✓ � �k)� h✓Bvk+✓ = h✓zk+✓,

D
�1(ak+✓ � ak) = h✓yk+✓

✓vN,k+1 = H
>
vk+✓ � (1� ✓)vN,k

�

0

B@
zk+✓

yk+✓

vN,k+1 + evN,k

1

CA 2 NC⇥IRm
+

0

B@
�k+✓

ak+✓

pN,k+1

1

CA

. (2)

where z = �"̇
p and y = �↵̇, and pN,k+1 is the approximation of the impulse measure over the time–

step. This finite-dimensional variational inequality at each time–step is well-posed as it can be recast as
a well-posed saddle point problem:

minv,"̇ max�,a
1

2
(v � vk)

>
M(v � vk)�

1

2
(� � �k)

>
S(� � �k)�

1

2
(a� ak)

>
D

�1(a� ak)

+h✓�
>
"̇� h✓f

>
ext,k+1v

s.t. Bv = "̇

✓vN = H
>
v � (1� ✓)vN,k0

B@
�

a

vN + evN,k

1

CA 2 C ⇥ IRm
+ .

(3)
and can be solved by optimisation methods for convex quadratic programs, providing an interesting al-
ternative to the return mapping algorithm. Furthermore, the discrete energy balance shows that spurious
numerical damping can be removed and the scheme is practically unconditionally stable.

The presentation will be completed by numerical illustrative examples of impacts on metallic struc-
tures made of beams.

References
[1] B. Halphen and Q. Son Nguyen. “Sur les matériaux standard généralisés”. In: Journal de Mécanique
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Figure 1: The benchmark with two point contact elements at the flange tips
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Figure 2: Response variability and the bounds
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Fig. 1a: asymmetrical dampers and 
blades, from [1] adapted
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We consider fluid-saturated poroelastic structures characterized by unilateral self-contact at the pore
level of the periodic microstructure. The contribution is devoted to the two-scale modelling based on
the homogenization [1] and related numerical methods. The unilateral frictionless contact interaction
is considered on matching pore surfaces of the elastic skeleton. Depending on the deformation due
to applied macroscopic loads, the self-contact interaction alters the one between the solid and fluid
phases. For the closed pore microstructures (see Fig. 1, left), a nonlinear elastic model is obtained at
the macroscopic scale, since the pressure, being constant for each pore can be eliminated. An efficient
algorithm for two-scale computational analysis is based on alternating micro- and macro-level steps.
A dual formulation of the pore-level contact problems in the local representative cells Ys ⇢ Y =
]0, 1[2 provides actual active contact sets �⇤

c(x) ⇢ �c which enables to compute consistent effective
elastic coefficients at particular macroscopic points x 2 ⌦, [3]; the local problems for an increment of
displacements u(y, x) and the contact Lagrange multipliers �(y, x), y 2 Ys attain the following form
involving operators A,B, and G arising from the elasticity and stress, and the gap-function constraint

hAu, viYs
+
⌦
B�̃mic

, v
↵
Ys

+ hG⇤
�, viYs

= 0 , 8v 2 eH1
#(Ys) ,

min{�hG(u � s̃), #i�c
| h�, #i�c

} = 0 , 8# 2 C⇤
+(�c) ,

(1)

where C⇤
+ denotes the self-dual cone of C+(�c) = {#|# � 0} associated with the non-penetration

condition. The finite element discretized contact problem (1) can be written as a nonsmooth equation
which can be solved by the semi-smooth Newton method [2].

At the macroscopic level, a sequential linearization leads to an incremental equilibrium problem in
domain ⌦ which is constrained by a projection arising from the homogenized contact constraint. The
“two-scale active contact set” ⌃� = {(x, y) 2 ⌦ ⇥ �c| y 2 �⇤

c(x) ⇢ �c}, such that the macroscopic
displacement increment uM 2 U0(⌦) and the Lagrange multiplier �M 2 H(⌃�) satisfy

Z

⌦

⇣
IDEex(uM ) + bP

⇤
�
M
⌘
: ex(v) =

Z

⌦
f · v �

Z

⌦
�̃ : ex(v) , 8v 2 U0(⌦) , (2)

with the out-of-balance at the right hand side , and the projection accounting for the kinematic constraint,

0 = max{��
M
, bP : ex(uM ) + es} a.e. in ⌃� , (3)

where IDE is the tangent elastic modulus associated with the actual contact sets �⇤
c(x) and, in the non-

smooth equation, the second argument bP : ex(uM )+es expresses the “two-scale” non-penetration condi-
tion. The Uzawa algorithm, or the semi-smooth Newton method can be employed. The newly proposed
two-scale contact algorithm which comprises alternating micro-problems (1) and the macro-problem
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Figure 1: Reference cell Y (left). Macroscopic problem with “bending” deformation: in ⌦, displayed
number of contact nodes at microlevel for dry and fluid-filled pores.

Figure 2: Contact tractions on �⇤
c at the microscopic level. Dry pores (above) and fluid-filled (bottom)

cells Y at macroscopic locations along line D-E, see Fig. 1

(2)-(3) have been implemented in the SfePy finite-element code. It provides better convergence rates
than the earlier version of the two-scale algorithm reported in [4] which involves the macro-problem
formulated as an equilibrium equality with totally frozen local contacts. The newly proposed algorithm
enables detachment of active contact parts near to the contact area boundary, @�⇤

c(x). Numerical ex-
amples of 2D deforming structures are presented in Figures 1 and 2, comparing the macroscopic and
microscopic responses for microstructures with dry and fluid-filled pores.
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The study of contact problems related to rough surfaces is a vigorously researched field that has prac-
tical applications in both engineering and physics. However, determining contact variables like traction
distributions, contact stiffness, and the actual contact area is challenging due to the intricate geometrical
complexity of the interface. The fractal feature of the surface spans a few orders of magnitude of length
scales, further complicating the impact on materials’ deformation and stress states [1]. Consequently,
there is a significant difficulty in understanding the evolution of the contact domain and determining
these variables, making it a challenging problem that still needs to be actively explored. Therefore,
understanding the connection between the topological features of surface roughness and the consequent
nonlinear constitutive relation at the interface is of prime importance for researchers today.

Several semi-analytical micromechanical contact theories relying on the statistical distribution of the
elevation of the asperities and their radii of curvature have been proposed in the last decades. In [2], a
new numerical formulation that operates on multiple scales has been introduced. In this approach, the
micro-scale problem involving roughness was solved using the Boundary Element Method (BEM) to
pre-compute the gap-pressure relation [3]. This gap-pressure relation was then fitted into an analytical
function to be used as a contact constitutive law to solve the macro-scale problem using the Finite
Element Method (FEM). While this approach allows to incorporate the effect of surface roughness into
FEM models of contact problems, it comes with limited accuracy in the high and low separation regime
[2], i.e., at very low and very high contact pressures.

Our current work explores a fully coupled implementation of the two scales to overcome the short-
comings of the previous methods through a consistent coupling of both the micro and the macro scale
within a single simulation framework. At the micro-scale, a linear elastic frictionless normal contact
between a rigid rough indentor and an elastic half-space is solved. For the topology of the indentor, any
statistically representative microscopically rough surface can be provided as input, also variable with the
position along the contact surface of the macro-scale finite element model. This approach allows testing
any surface roughness topology without making assumptions on the surface height distribution. In our
examples, the Random Mid-point Displacement (RMD) method [4] is used to generate a rough surface
using its fractal parameters. A sample surface generated using the RMD method is shown in Figure 1a.
The empirical relations given in [5] can be used to get the fractal parameters of the surface given its sta-
tistical parameters to define a rough surface uniquely. The BEM is used to solve the contact problem at
the micro-scale, as it has the ability to handle a very fine discretization of the interface without the need
to discretize the bulk volume. The macro-scale model is solved using FEM, where the contact interface
is discretized using mortar elements, see Figure 1b. In this approach, the interface’s relative normal
displacement, as computed by the macro-scale finite element model, is passed as far-field displacement
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(a) A sample rough surface generated using the RMD method (b) Mortar method at the contact interface

Figure 1: Discretization at the micro-scale and the macro-scale

to the micro-scale model, which is called at each node of the mortar elements within the macro-scale
framework. At every mortar node, the normal contact traction is calculated using the BEM algorithm,
and the interface stiffness is approximated by a finite-difference approach. These parameters calculated
at the micro-scale are then passed back to the macro-scale model.

In this presentation, we will outline our approach for the multi-scale coupling realized through
FEM/BEM code coupling. We will show various qualitative and quantitative examples to demonstrate
the validity and usefulness of the proposed multi-scale approach as well as discuss its advantages and
limitations.
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Brittle crack propagation is present in various engineering applications, from the design of lithium-
ion batteries to the assessment of safety-critical structures. One such example is brittle crack propagation
in irradiated graphite bricks in a nuclear reactor, where one of the challenges is associated with handling
contact interaction between different parts of the core’s assembly. As a result, to model such systems, the
computational framework has to handle, along with other nonlinearities, coupled unilateral constraints
emerging from the crack propagation and from the contact interaction.

Computational studies have been conducted regarding the influence of contact between crack sur-
faces on the crack propagation, e.g. using the XFEM approach. These models are often employed
to investigate the influence of fretting fatigue on the nucleation of a crack on one side of the contact
interface and its propagation towards the interior of the body [1]. However, in the mentioned above
nuclear industry applications, the cracks are not observed to close, while cases when the trace of the
crack front traverses one side of a contact interface have to be addressed to assess the influence of the
contact traction on the evolving crack morphology. Therefore, in this work, contact is considered only
between separate bodies and not between the crack surfaces, see Figure 1.

A thermodynamically consistent numerical framework based on configurational mechanics for mod-
elling brittle crack propagation has been proposed in [2]. In the present work, this framework has
been extended to account for contact conditions [3]. In the proposed framework, crack propagation
is described by means of the Arbitrary Lagrangian-Eulerian (ALE) formulation: material kinematic
variables, X, that describe crack surface increment are coupled with spatial kinematic variables, x, that

contact interfaces

crack surface crack front

(a) (b)

Figure 1: Crack propagation along contact interfaces: material (a) and spatial (b) configurations.
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describe the elastic body deformation. Configurational forces, G@�cr , which drive the crack propagation
in the material domain, are considered only at the crack front, @�cr, and are dual to material velocities
Ẇ. The equilibrium equation for the crack front reads:

Ẇ · (gcrA@�cr/2�G@�cr) = 0, (1)

where gcr is the Griffith’s energy, A@�cr is the vector that determines the crack front extension and
gcrA@�cr/2 denotes the material resistance force.

The crack propagation is based on the Griffith’s criterion that can be understood as a unilateral
constraint and can be expressed via the active set method with a complementarity function which is
similar to the one proposed for frictionless contact constraints [4]:

Ccr(⇢, ẆK) := ⇢�max
⇣
0, ⇢� ccrA

@�cr · Ẇ
⌘
, (2)

where ccr is the complimentary parameter and ⇢ is the Lagrange multiplier function which enforces the
crack front balance equation (1).

At the same time, contact conditions between two deformable bodies are considered, where tradi-
tionally one of them is master and the other one slave and the fields of interest corresponding to each
body are denoted by superscripts (1) and (2), respectively. Similarly to the crack propagation problem,
contact constraints are enforced via the the complementatiry function proposed in [4]:

Ccon(�,x,X) := ��max (0,�� cngcon) , with gcon := �N · (x(1) � x(2)), (3)

where gcon is the gap function and N is the normal to the slave surface in the material domain. A mortar
contact formulation [5] is employed for contact surfaces which are not expected to be traversed by the
crack front, while a special case of mortar contact, where “shadowing” of contact elements originally
placed on top of each other is preserved, is employed on the surfaces traversed by the crack.

The proposed framework is implemented by means of finite elements in a fully implicit formulation
within the open-source software MoFEM [6]. The development has been verified and validated against
numerical and experimental results. Furthermore, the effect of the contact traction on the crack front
material forces is investigated.
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Cardiovascular diseases remain one the leading causes of morbidity and mortality worldwide. 
Computational models provide a unique opportunity to investigate the mechanisms leading to the 
initiation and the progressive development of vascular pathologies such as aneurysms and 
atherosclerosis. These computational models provide detailed data, in terms of fluid dynamics and 
stress distribution, that complement in vivo and in vitro testing, and that can be used in a predictive 
sense to support clinical practice and medical device manufacturing. 
In contrast to in vitro studies, CFD is more convenient for studying model sensitivity with respect 
to boundary conditions and material constitutive law and parameters. 
In this work, we employ a localized version of the L2-projection for handling the fluid-structure 
volumetric coupling and a variant of the mortar method for coupling the surfaces of the structures 
in contact. The fluid-solid coupling is enforced with a Lagrange multiplier over the entire 
overlapping region.  
The proposed method allows for the efficient and accurate resampling of fields across the fluid and 
the solid domains, which may feature very complex geometries. The choice of discretization 
techniques and parallel algorithms ensures convergence, efficiency, flexibility, and accuracy 
without requiring a priori information on the relation between the different meshes.  
The discretization of the large deformation contact problem is based on a mortar approach for 
obtaining a well-posed and computationally feasible variational formulation. We note that the 
related literature usually employs a penalty method for modeling the contact arising among the 
leaflets during the closure of the valve. Such a method requires properly tuning nonphysical 
parameters, i.e., the penalty constant, which introduces additional errors.  
We present numerical results for various benchmark problems and employ the proposed approach 
to simulate the dynamics of the aortic flow and the bio-prosthetic aortic valves. 
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In 1983, Andersen [1] proposed the RATTLE integrator as an extension of the SHAKE algorithm [2].
The RATTLE integrator is a well-established method for simulating mechanical systems with bilateral
constraints. However, there is a need for higher-order integration schemes for simulating nonsmooth
mechanical systems with frictional contact, see e.g. Figure 1. This talk presents an extension to the
RATTLE integrator that addresses this issue within the framework of nonsmooth contact dynamics [3,
4, 5]. The proposed scheme can simulate impact-free motions, such as persistent frictional contact, with
second-order accuracy and prohibits penetration by unilateral constraints on position level.

Figure 1: Simulation of rockfall protection ring nets with frictional contact.

Consider a finite-dimensional mechanical system whose state is described by the generalized coor-
dinates q(t) 2 Rn and by the generalized velocities u(t) 2 Rm, which are both functions of time t.
The relation between positions and velocities is a consequence of the kinematics of the system and is
generally of the form

dq = q̇(q,u) dt where q̇(q,u) = B(q)u+ �(q) and B(q) 2 Rn⇥m . (1)

At a point x 2 Rf in a closed, convex, and non-empty set C, the normal and tangent cones are
defined by NC(x) = {y 2 Rf |yT(x⇤ � x)  0, 8x⇤ 2 C} and TC(x) = {v 2 Rf |vTy  0, 8y 2
NC(x)}, respectively. The dynamics of a mechanical system subjected to both unilateral and bilateral
constraints can be described by the measure differential inclusion

M(q) du = h(q,u) dt+W(q)dP (2a)
0 = g(q) , 0 = ġ(q,u) , (2b)

�Rk
N 2 NR+

0

�
gkN (q)

�
, �Rk

N 2 N
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N (q)
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�k
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�,u+) 2 NB(µRk
N )(�Rk
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using the notation introduced by Moreau [3] in 1988. Herein, the equality of measure (2a) relates the
change in velocity du to the forces acting on the system. Non-constraint forces, such as spring forces,
gyroscopic terms, and dashpot forces, are assumed to be non-impulsive and can be conveniently grouped
together as h(q,u). The force measure W(q)dP in (2a) includes the ideal constraint forces from both
unilateral and bilateral constraints, as described by equations (2b) through (2d). The percussion measure
dP = R dµ captures the combined effects of both impulsive and non-impulsive forces. The bilateral
constraints at position and velocity levels are enforced by equation (2b). Meanwhile, equation (2c)
incorporates Signorini’s law and a mixture of Signorini’s law at velocity level and Newton’s impact law
in normal direction. Finally, equation (2d) describes Coulomb’s friction law and its combination with a
Newton-type impact law in tangent direction.

To solve the normal cone inclusions that arise in the contact laws (2c) and (2d), we use the fact that
for two vectors x 2 Rf and y 2 Rf the following are equivalent relations

y 2 NC(x) , x = proxC(ry + x) 8r > 0 , (3)

where proxC is the proximal point function to the closed convex non-empty set C ⇢ Rf , see [4, 6].
With the normal cone inclusions (2c) and (2d) replaced by their corresponding implicit equations

given by (3), we are able to generalize the classical RATTLE scheme [7] to frictional unilateral con-
straints.
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Contact problems refer to modeling of the interaction between two or more elastic bodies when they
are in contact with each other. While solving such contact problems, we must accurately model the
forces the bodies induce at the contact surfaces and compute the resultant deformation due to the in-
teraction between bodies. These problems are quite common in many scientific fields, e.g., mechanical
engineering, automotive engineering, robotics, and biomechanics.

The formulation of the contact problems gives rise to variational inequalities, as the contact bound-
aries are part of the solution and are unknown apriori. Due to these reasons, it becomes essential to
employ iterative solution methods to solve contact problems. At each iteration, the algorithm aims to
satisfy equilibrium conditions for a given contact boundary. In many cases, the iterative schemes are
computationally intensive and heavily rely on the geometric information of the problem.

To address these challenges, we present a domain decomposition-based solution strategy for solving
contact problems in a fully algebraic manner. In this work, we employ a dual Lagrange multiplier-based
mortar Finite Element method for discretization. In addition, we also apply a Householder reflection
to transform the local coordinate system such that the linear contact constraints can be transformed
to point-wise constraints [1]. Once the algebraic system is constructed, we need to solve a sequential
quadratic programming problem. To this aim, we employ a sub-structuring domain decomposition-
based strategy that decomposes the domains in non-overlapping subdomains. Using these non-overlapping
subdomains, we decouple the unknowns into the interior of the subdomains and the ones that are on the
interfaces and the contact boundary (also called skeleton). By employing this decomposition, we elim-
inate the interior unknowns and construct a smaller subproblem on the skeleton which is subjected to
inequality constraints. Once we have constructed a smaller constrained optimization problem, we can
solve it using projection-based methods [3, 2]. This robust approach allows us to solve large-scale
problems using distributed computing environment.

Finally, we will present some numerical results to demonstrate the performance of our method using
several numerical examples. We will test our solution strategy for solving the contact problem with
hyperelastic material with multiple bodies in two and three dimensions.
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Triboelectric nanogenerators (TENG) are modern devices that use repeated cycles of contact between

suitably chosen surfaces to transform mechanical energy into electrical energy, see Fig. 1(a). TENG

have attracted significant attention in recent years as autonomous clean energy harvesters, where various

sources of mechanical energy can be used: from human motion (wearable textile systems for charging

miniature medical sensors) to ocean waves (large-scale networks for “blue energy” harvesting) [1].

Since tribo-charges appear only in zones of the real contact between two surfaces, the surface rough-

ness and the external load have a significant effect on the output performance of TENG [2]. Numerical

simulation of TENG requires multi-physical coupling of contact mechanics and electrostatics, and is

further complicated if the surface roughness is taken into account. Recently we developed a computa-

tional framework capable of solving such problems using open-source library MoFEM [3], where the

surface roughness measurements are projected on the finite element mesh, and the deformable-to-rigid-

body contact problem is solved [4], see Fig. 1(b)-(c). The aim of the present work is to increase the

accuracy of the real contact area identification by using a novel contact formulation.

First, we compute the contact area based on contributions from Gauss points of surface elements.

We extend the formulation proposed in [5] and consider the values of the gap g and Lagrange multipliers

� interpolated also at Gauss points. The virtual work on the variation of the displacement field u reads:

Z

�c

W c
u(u,�, ✏) · �u d� ⇡

ngpX

k=1

wkJk

8
<

:
�k

@g(uk)

@uk
· �uk, �k + ✏g(uk)  0

0, �k + ✏g(uk) > 0,
(1)

Figure 1: (a) schematic of the contact-separation TENG; (b) example of surface roughness measure-

ments; (c) projection of the surface morphology on finite-element mesh for the contact problem setup.
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Figure 2: (a) real contact area morphology for the surface element, Fig 1(a)-(b), under external load of

0.4 MPa, (b) evolution of the real contact area with the increasing load: comparison with the experiment.

where ✏ is the augmentation/complimentary parameter, wk is the weight associated with k-th Gauss

point and Jk is the value of the Jacobian. Accordingly, the real contact area is computed as:

Ac ⇡
ngpX

k=1

(
wkJk, �k + ✏g(uk)  0

0, �k + ✏g(uk) > 0.
(2)

Furthermore, we use a novel contact formulation based on the approximation of Lagrange multipliers

in Raviart-Thomas space. Such formulation, along with Gauss-point-based evaluation of quantities (1)

permits utilisation of hierarchical shape functions, providing stability and allowing for p-refinement.

The resulting morphology of the real contact area is presented in Fig. 2(a), while the evolution of the

contact area is demonstrated in Fig. 2(b), where our results are compared with predictions of Persson’s

analytical formula [4] and experimental results obtained using interference reflection microscopy. While

the results of the numerical simulation are closer to the experimental data than the analytical formula,

the remaining discrepancy between the experiment and simulation is the topic of our ongoing work.
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Improving performance of augmented Lagrangians

David Horak1,2, Zdenek Dostal1,3, Jakub Kruzik1,2, Oldrich Vlach1,3

1Department of Applied Mathematics, VSB-Technical University of Ostrava, Czech
Republic
2Department of Applied Mathematics and Computer Science, Institute of Geonics,
Czech Academy of Sciences, Czech Republic
31IT4Innovations National Supercomputing Center, VSB - Technical University of
Ostrava, Czech Republic
E-mail: david.horak@vsb.cz, zdenek.dostal@vsb.cz, jakub.kruzik@vsb.cz,
oldrich.vlach2@vsb.cz

Keywords: Quadratic programming, augmented Lagrangian, active and free sets.

SMALSE-rho and SMALSE-M (Semi-Monotonic Augmented Lagrangian method for Separable
and Equality constraints) algorithms are efficient tools for solving the quadratic programming
problems with equality constraint and simple bound [1]. These algorithms consist of an outer loop
for update of parameters rho or M, approximation of the Lagrange multipliers for equality
constraint and MPRGP (Modified Proportioning with Reduced Gradient Projection) algorithm [3]
used as an inner solver for problems with penalized equality constraint and simple bound. These
algorithms are implemented for massively parallel usage into our in-house PERMON library [4]
based on PETSc. SMALSE terminates if norms of the equality constraint violation and norm of the
projected gradient are sufficiently small compared to the norm of the right hand side multiplied by
the relative tolerance. MPRGP in general terminates, if the norm of the projected gradient is less
than the norm of the violation of the equality constraint multiplied by SMALSE M-parameter.
Parameter M is fixed for SMALSE-rho while penalty rho increases depending on the augmented
Lagrangian growth. In SMALSE-M depending on the augmented Lagrangian growth, M decreases
while rho is fixed. The larger penalty rho accelerates an outer loop, while larger parameter M
accelerates an inner one. The presentation deals with the new theoretically supported
SMALSE-rho,M variant increasing both M and rho parameters and reducing both numbers of
outer and inner iterations. The performance of SMALSE versions can be further essentially
improved by enhancing the information on the free set of current iterates into the
reorthogonalization of equality constraints [2]. The presentation deals with the efficient parallel
implementation requiring no transformation of the Lagrange multipliers and no assembling and no
factorizing the whole product of matrices with equality constraints reflecting changed free set, but
just their small submatrix dealing with rows affected by simple bound. All these improvements
will be demonstrated by large-scale numerical experiments with contact problems solved using the
FETI (Finite Element Tearing and Interconnect) method.
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Beam finite elements are dedicated to efficiently predict the mechanics of slender constituents. Contact
formulations for beams typically aim to repel beam finite elements from each other in case they pene-
trate each other [1, 2]. This is for instance useful for mesostructural models in which the mechanical
deformation of each fiber or strut is described by a string of consecutive beam elements.

In this presentation however, a so-called beam-inside-beam contact formulation is discussed for
beams with both circular and elliptical cross sections [3]. The beam-inside-beam contact formulation
aims to keep a string of consecutive beam elements embedded within another string of consecutive beam
elements. Because the presented work accounts for large rotations and large deformations, a variety of
applications may be considered. These include slender instruments and sensors to investigate pipes and
tubes, but also slender medical instruments inside the human body. Examples are hearing aids that must
be precisely inserted in the cochlea, or guide wires that have to find their way through the vascular sys-
tem.

Figure 1: The beam-inside-beam contact frameworks keeps a string of consecutive beam elements
embedded within another string of consecutive beam elements. Left: initial configuration, center:

intermediate configuration, right: final configuration.

The framework is first discussed for frictionless contact. A smooth center line approximation is
introduced so that the surface approximation of the series of consecutive beam elements is smooth as
well. Potential contact is considered for (the rigid) cross sections of the inner string of beam elements at
predefined axial locations (see Fig. 2). This enables the treatment of non-local contact: in other words,
contact between the inner beams and the outer beams can occur all through the model.
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Figure 2: Potential penetration is considered for cross sections of the inner string of beam elements.

Subsequently, the frictional case is considered [4]. Whereas in conventional node-to-surface contact
formulations, the sliding distance can ‘simply’ be quantified by tracking how far a slave node has slid
over the master surface, this is not possible for the beam-inside-beam contact scheme (nor for beam-to-
beam contact schemes for that matter). As a solution to this issue, the sliding distance is expressed in
terms of contact points of the current increment and contact points of the previous increment, where the
locations of the current contact points are considered in the configuration of the previous increment.

More details of the beam-inside-beam contact scheme, such as advantages and limitations, will be
discussed in the presentation.
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Machine learning models usually require an extensive amount of simulation or experimental data,
which may be challenging to acquire due to the complexity of simulations and the cost of experiments.
Also, data scarcity can cause data-driven techniques to perform poorly in terms of accuracy. This
is particularly true when using real-world observations that are noisy or datasets that are incorrectly
labeled, as there is no physical control mechanism to validate the predictions. To tackle this problem,
physics-informed neural networks (PINNs) have been developed. PINNs integrate boundary or initial
boundary value problems and measurement data into the neural network’s loss function to compensate
for the lack of sufficient data and the unknown behavior of data-driven techniques [1]. Based on sensor
data of a physical object, PINNs can be used in hybrid digital twins of civil engineering structures [2].
In the field of computational mechanics, PINNs can serve as a forward solver, as data-enhanced forward
model, as inverse solver for parameter identification, and as fast-to-evaluate surrogate model.
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Figure 1: Physics-informed neural networks for contact mechanics in the case of linear elasticity.

In this contribution, we extend the concept of physics-informed neural networks to solve elemen-
tary problems of contact mechanics. We start with the governing equations of linear elasticity in a
mixed-variable formulation in which displacements and stresses are taken as independent quantities. In
comparison to pure solid mechanics, contact problems involve additional constraints, namely Karush-

Kuhn-Tucker (KKT) type inequalities (see Fig. 1). The simplest way to enforce KKT conditions is to use
an adopted sign-function to distinguish active or inactive contact regions. As an alternative, an adopted
Sigmoid function with finite gradients can be used, but this requires a rather well-tuned softness pa-
rameter. Moreover, a nonlinear complementary function, namely the Fischer-Burmeister NCP-function,
provides an elegant way to reduce the three inequality constraints into a single equality.

For our PINN implementation, the mixed-variable formulation has the advantage that only first-order
derivatives of the network input are required. An appropriate output transformation allows us to enforce
displacement and stress boundary conditions as hard constraints, i.e., they are exactly fulfilled by the
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augmented network output. Further boundary conditions, e.g., the KKT conditions are enforced as soft
constraints by adding corresponding contributions to the overall loss function.

PI
N

N
FE

M

Figure 2: Comparison of stresses computed by PINN and FEM for a 2D Hertzian contact problem.

As a specific example we consider the 2D Hertzian contact problem of an elastic half-cylinder and
a rigid plane [3]. For this setup, four distinct PINN application cases are demonstrated. In the first
use case, we deploy PINNs as a pure contact mechanics solver to validate our approach (see Fig. 2
for a comparison to FEM). One of the key features of PINNs is to be capable of involving ”external”
(measurement or simulation) data very easily. Thus, in the second use case, we enhance our PINN model
with displacement and stress values obtained by FEM to improve the prediction accuracy. In the third
use case, the PINN is used to solve an inverse problem, namely, the prescribed load on the half-cylinder
is identified from FEM data. As fourth and final example, the load (external pressure) is considered as
a network input to construct a fast-to-evaluate surrogate model for different pressure values.
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Simulating tribocharging of flowing granular materials with patchy particles
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To simulate tribocharging, we defined patches at the surface of spherical particles using a Voronoi 
tessellation (see Figure 1). These patches could be donors or acceptors of charges. We used a site 
donor probability p and a uniform distribution to assign the sites’ nature. Once the particles are in 
motion and touch each other, charge transfer occurs between the patches. The Discrete Element 
Method (DEM) is used to compute the dynamics of the granular material in a rotating drum. It 
consists in computing every possible force on each spherical particle at a given time step and then 
apply Newton’s Second Law of Motion to displace them to the following time step. In addition to 
the classical contact forces, Coulomb forces between the paches are considered. 
 
We placed electrically neutral and equal in size particles in a rotating drum and measured the total 
transferred charge over time while the drum is rotating. The total transferred charge increases rapidly 
until saturation. Therefore, the patches are charging, inducing the formation of agglomerates as 
observed experimentally [4]. We reproduced also numerically the charging of binary mixtures with 
small and large grains charging with an opposite charge. One more time, this result is coherent with 
experimental observations [5]. 
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Nowadays, the comprehension of granular media and their behaviors has become a significant con-

cern for multiple industries. The scientific community, which exhibits a particular interest in researching

these materials, is confronted not only with the complex character of the interactions governing their

dynamics but also with the ever-increasing and recurring demand to simulate them. In front of these

challenges, tools adapted to model granular dynamics have emerged, mainly grouped under the term of

Discrete Element Method (DEM) [1]. Granular dynamics is then governed by Newtons second law of

motion combined with a regular contact model. In particular, DEM simulations can be computationally

expensive due to the explicit time schemes small time steps. Later, other discrete element based strate-

gies have been developed (see, e.g., [1] and the references therein). Among those works, we mention

the Non-Smooth Contact Dynamics (NSCD) approach [2] which (roughly speaking) takes into account

the frictional contact interactions collectively during a time step and handle the non-regular dynamics

equations through the Non-Linear Gauss-Seidel algorithm (NLGS).

In this work, we are interested in a discontinuous (with bounded variation) Moreau second-order

sweeping process modeling the contact dynamics of rigid particles. Recall that sweeping processes [4]

are particular differential inclusions governed by the normal cone of a (possibly nonconvex) moving

set. The contact law is modeled through the Moreau-Yosida regularization [3] of the unilateral condi-

tion. It seems that the Moreau-Yosida regularization with parameter ↵ (which encompasses the usual

Moreau-Yosida method with ↵ = 2) is an appropriate tool to develop a regular contact model (normal

compliance). The ↵-Moreau-Yosida regularization seems to be an appropriate tool to find find a regular

contact model (normal compliance) which preserves the kinetic energy of the system while preserving

the non-interpenetration of the contact.

The discrete Improved Normal Compliance (INC) method is considered suitable for ensuring energy

conservation in adequation with the continuous framework. To solve the nonlinearity issue, a combina-

tion of the Newmark method [5] and the Primal-Dual Active Set (PDAS) method using complementarity

of the various contact models [6] will be employed. The aim of this approach is to compare the effi-

cacy of this improved method with other regular (DEM) and non-regular (NSCD) numerical modeling

techniques.

The main aim of the present work is to improve an implicit regularization method for which energy

conservation and non-penetration are quite similar to NSCD-NLGS along with a suitable computational

cost. Several numerical experiments are reported for verification and validation purposes, and also to

evaluate the efficiency and assess the performances of Newmark-PDAS-INC method compared to other

numerical methods (DEM, NSCD-NLGS).
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We assume that a particle q among Nq particles is described by the position of its center of gravity

and its rotation, denote by q the generalized coordinate describing its position (q 2 Rd̄⇥Nq , where d̄ =
6 in 3D and d̄ = 3 in 2D). Due to the possible shocks between particles, we introduce the generalized

velocity q̇ as a function of bounded variation and its associated differential measure dq̇. According to

the fundamental principle of rigid dynamics, the equations of motion formulated in terms of differential

measures can be written as Mdq̇ = F (t,q, q̇)dt+ d⇤ (1)

where M is the generalized mass matrix; F is external forces; d⇤ is a non negative real measure repre-

senting reaction forces and impulses between particles at contact. Given a time discretization(ti)i of the

interval [0, T ] and setting �t := ti�1� ti we easily derive from 1 the following discrete approximation:

(P )

8
<

:
M q̇n+1 � q̇n

�t
= F +⇤n+1

q(0) = q0, q̇(0) = v0

(2)

In order to almost conserve the energy and to respect the energy balance of the continuous case, we

replace the ↵-normal compliance contact distance ([Dn+1
⌫ ]+)↵ by Improved Normal Compliance value

D̃n+1
⌫ =

([Dn+1
⌫ ]+)↵ � ([Dn

⌫ ]+)
↵

↵(Dn+1
⌫ �Dn

⌫ )
,

where D⌫ = D⌫(qi, qj) represents the signed distance from particle i to particle j, and ↵ > 2. We then

obtain the normal stress value ⇤n+1
of the Improved Normal Compliance condition in the discrete case:

⇤n+1 = c⌫ [D̃n+1
⌫ ]+⌫n+1

with c⌫ > 0 and ⌫ the normal.

Figure 1 fives some numerical results concerning a two-dimensional system with 81 particles. Each

particle has a random trajectory and velocity with respect to time without friction and without gravity.

Figure 1: 2-Dimension system with 81 particles and numerical comparison bewteen different methods.

It turns out that the INC method implemented are at least just as much relevant as the NSCD-NLGS

method and much better than DEM, regarding energy conservation properties and non penetrations, as

they display physically realistic behaviour.
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Viscoelasticity is a complex and fascinating area of research in applied mechanics that has garnered 
increasing attention in recent years due to the prevalence of soft materials in industrial engineering 
and biological systems. Due to the time-dependent behavior viscoelastic materials exhibit, it is 
important to develop experimental techniques to accurately characterize them on a mechanical level. 
Dynamic mechanical analysis (DMA) is currently considered the gold standard for characterizing 
viscoelastic material. DMA involves testing samples in various ways and sweeping a temperature 
interval to construct the master curve of the viscoelastic modulus (see Figure 1a). However, DMA 
has some limitations, such as requiring sample extraction and testing at different temperatures, 
which may not be feasible for many biomechanical problems where sample availability and thermal 
heating can be problematic [1, 2]. 
In recent years, indentation tests have emerged as a promising alternative to DMA: a rigid punch 
indents a sample, and the evolution of the process in terms of force or penetration is measured to 
retrieve creep and relaxation properties. It is important to highlight that, differently from DMA, 
indentation tests do not require sample extraction and can be performed at a single temperature.  
When testing thin films, particular care has to be paid in the correlation used to recover the material 
properties. Indeed, a variety of numerical studies have been recently proposed to analyze the 
indentation process, yet they present a strict limitation, as they are based on the half-space 
assumption, for the contact regions are assumed much smaller than the thickness of the solids in 
contact. Clearly, for thin layers, this can lead to a significant misinterpretation of the phenomenon, 
as shown for sliding contact problems [2,3].   
The study aims to determine the degree of correspondence between numerical and experimental 
outcomes, obtained using MACH-1, Biomomentum) (see Figure 1b), and assess the reliability of 
numerical simulations in predicting the results of various samples. 
Specifically, the study paves over a Boundary Element (BE) approach [4,5] to investigate the 
indentation process also when the solids in contact are thin layers. In particular, the BE methodology 
is based on the following integral formulation, explicitly accounting for the time and space domain: 
   
 𝑢(𝑥, 𝑡) =  ∫ 𝑑𝜏௧

ିஶ ∫ 𝑑ଶ𝑥ᇱ 𝐽(𝑡 − 𝜏)𝐺(𝑥 − 𝑥ᇱ) �̇�(𝑥ᇱ, 𝜏) , (1) 
   

where 𝐺(𝑥) is the spatial Green’s function, 𝐺(𝑥), �̇�(𝑥, 𝑡) is the time derivative of the stress, and 
𝐽(𝑡) is the so-called creep function, which obeys the causality principle, i.e. 𝐽(𝑡) = 0 for 𝑡 < 0. It is 
important to notice that the Green’s function 𝐺(𝑥) satisfies the boundary conditions imposed on the 
viscoelastic substrate, thus addressing the problem to correctly take into consideration the influence 
of the viscoelastic slab thickness.    
In summary, this study presents a significant opportunity to explore the potential of indentation tests 
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as an alternative method for characterizing viscoelastic materials and their applications in various 
fields. By comparing experimental and numerical results of indentation tests, the study aims to 
provide a better understanding of the indentation process of thin layers and assess the reliability of 
numerical simulations in predicting the results of various samples. The study also highlights the 
importance of numerical assessment of indentation in other problems where the damping offered by 
viscoelastic hysteresis is fundamental, such as viscoelastic vibrations and soft grasping in robotic 
devices. 
 

 
Figure 1: Experimental characterization: (a) DMA, (b) Indentation Test 
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Building on an analogy to ductile fracture mechanics, we investigate the energetic cost of debris
particle creation during adhesive wear. Macroscopically, Reye proposed in 1860 that there is a linear
relation between frictional work and wear volume at the macroscopic scale. Earlier work suggested
a linear relation between tangential work and wear debris volume also exists at the scale of a single
asperity [1], assuming that the debris size is proportional to the micro contact size multiplied by the
junction shear strength. However, recent works revealed deviations from linearity at the microscopic
scale [2, 3]. These deviations can be rationalized with fracture mechanics and imply that less work is
necessary to generate debris than what was assumed. Here, we postulate that the work needed to detach
a wear particle is made of the surface energy expended to create new fracture surfaces, and also of plastic
work within a fracture process zone of a given width around the cracks. Our theoretical model, validated
by molecular dynamics simulations, reveals a super-linear scaling relation between debris volume (Vd)
and tangential work (Wt): Vd ⇠ W 3/2

t in 3D and Vd ⇠ W 2
t in 2D. We also address the logical follow-up

questions as to how to reconcile this non-linear scaling at the micro-level with Reye’s theory, i.e., the
well-documented linear scaling at the macroscale.
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Figure 1: Tangential work (Wt) v. debris volume (Vd) in single-asperity wear [3]. (a) Comparison of
results in [1] to new results [3] (inset depicts MD model geometry, ⇠ 107 atoms). (c) Verifying the new
scaling (inset represents debris particle).
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The prediction of the wear of railway wheels by means of reliable numerical codes is a key point to 
enable the introduction of predictive maintenance strategies, with considerable benefits in terms of 
costs and operation safety. The worn profile of railway wheels is commonly computed from the 
outputs of dynamic simulations, by means of wear laws that express the worn material as a function 
of the quantities related to the contact conditions [1]. Most wear laws can be applied in either global 
or local form. In the first case, the total worn volume is evaluated directly from the contact forces 
and creepages, and then the profile shape is obtained by spreading the worn material along the 
contact patch according to an a priori distribution. Conversely, local approaches calculate the 
distribution of the wear depth over the contact patch starting from the local values of tangential 
pressure and sliding speed.  

The present paper aims to point out the main differences between the local and global application 
of the Archard’s wear law, and to give further insights into the wear algorithm implemented in the 
wear module of the Simpack commercial multibody code. For this purpose, the worn profile is 
determined on the right wheel of the front wheelset of a Aln663 diesel railcar, modelled in Simpack. 
The MB model of the vehicle includes 13 bodies, namely one coach, two bolsters, two bogie frames, 
four wheelsets and eight axle-boxes. All bodies feature six degrees of freedom (d.o.fs), except for 
the axle-boxes, which only feature a rotational d.o.f with respect to the wheelsets. The nonlinearities 
of both primary and secondary suspension stages are modelled in detail. The track is modelled 
without irregularities, and it features 18 curves with radius from 300 m to 2000 m with step of 100 
m and a tighter curve with radius of 280 m. The wheel-rail normal contact forces are calculated with 
a semi-Hertzian approach based on Kik and Piotrowski’s work [2], while the tangential forces are 
evaluated with Kalker’s FASTSIM algorithm [3]. Further details on the MB model can be found in 
[4]. The worn profile shape is calculated with global and local applications of the Archard’s wear 
law, by means of in-house dedicated routines written in MATLAB and of the Simpack wear module, 
based on a global approach. According to Archard’s wear law, the amount of worn material is 
proportional to the normal load and sliding distance, through a proportionality coefficient evaluated 
from experimental maps depending on the values of sliding speed and contact pressure. In the 
present paper, the wear coefficient is extracted from the wear map proposed by the Swedish Royal 
Institute of Technology (KTH), with application of reduction factors accounting for the effects of 
natural lubrication [5]. The KTH wear map accounts for four wear zones, namely two mild zones, a 
severe wear zone and finally a catastrophic wear zone, which is entered when the contact pressure 
is above a threshold value, typically assumed equal to 80% of the hardness of the softer contacting 
body. The global algorithm implemented in MATLAB spreads the total worn volume obtained from 
the global application of Archard’s wear law according to an elliptic distribution, thus assuming that 
the wear depth is proportional to the Hertzian pressure. On the other hand, the MATLAB routine 
performing the local calculation of wear includes the FASTSIM algorithm [3] for the identification 
of the adhesion and slip zones on the contact patch.  

The wear depths calculated by the global and local algorithms after a single multibody dynamic 
simulation are shown in Figure 1, which also displays the wear depth extracted from the outputs of 
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the Simpack Wear module. The three wear routines predict a higher wear on the wheel flange (lateral 
coordinates in the range between -40 mm and -20 mm), whereby the contact occurs when the vehicle
a curved track section. In fact, the lateral creepage and the spin coefficient tend to increase in curves.
The wear depth calculated by the MATLAB global routine is close to the one predicted by the 
Simpack Wear module. Slight differences may be due to different strategies used to smooth the wear 
depth. Because of the good agreement between the two wear routines, it can be concluded that the 
Simpack Wear module is extremely likely to rely on an elliptical distribution to spread the worn 
volume along the profile. The Simpack Wear module seems to estimate the contact pressure without 
applying filters to the normal load signal. This can cause localized wear peaks when wear is 
evaluated using the Archard’s law, which predicts a step transition towards a catastrophic wear 
regime based on the contact pressure value. The local algorithm predicts two wear depth peaks, 
because it can account for local peaks of contact pressure and sliding speed, while the global 
algorithms can only rely on average values of sliding speed and contact pressure on the whole patch.
Eventually, the wear peaks can produce numerical instabilities in the computation when the 
evolution of the wheel profile shape is calculated with an iteration of dynamic simulations, launched 
with worn profiles.

Figure 1: Wear depth along the wheel lateral coordinate calculated with the three algorithms (solid 
lines) and original wheel profile (dotted line).
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The development of engineering systems involves a critical phase of analysis of virtual 
designs with the models being subjected to boundary conditions that emulate real-world scenarios. 
In systems with multiple components e.g., vehicles, industrial machinery etc., the mechanical 
assembly that holds the structure involves physical contact between its body parts. These 
components undergo motion as well as deformation during the operational phase due to the load 
transfer from physically interacting parts in the system. These contacts pose a nonlinear problem as 
the area over which the loading tractions act is not known apriori. Numerically such problems can 
be solved using finite elements where the solution methods attempt to predict the traction at the 
elements on the boundaries of the interacting discretized geometries. This involves two stages - 
evaluation of normal forces due to the interacting elements where the interpenetration between the 
contacting surfaces has to be prevented and then the relative tangential motion, opposed by frictional 
tractions needs to be computed. 
 

In this work, a novel tangential traction formulation is presented which is based on the 
classical predictor-corrector approach to resolving the non-linear response of the frictional surfaces. 
The updating trial traction bears a resemblance with the loading and unloading path of pressure and 
rate-dependent elastic-perfectly plastic material. The most often used node-to-surface-based contact 
methods are prone to inaccuracies due to sharp contacts. While the updating trial traction has been 
used in the master-slave strategy for the segment-to-segment approach [1] it has inherent biasing 
due to the choice of the master or slave surface. Researchers have introduced two-pass approaches 
to overcome biasing where the tractions are calculated on one surface in one pass followed by the 
same calculation on the other surface [2]. However, such repeated calculations not only add up the 
cost of computation, but they also don’t maintain the necessary equilibrium of tangential tractions 
on opposite surfaces.  
 

This work presents a midplane-based approach for interacting facets of the opposite 
surfaces where the trial tractions can be calculated in an unbiased manner in a single pass. This 
reduces the computational cost associated with dual passes while also eliminating the biasing 
inherent in the choice of the surface. Here, trial traction calculations are described that can be 
computed on a common interface basis for the interacting surfaces while considering the arbitrary 
slip between the two surfaces from the initial point of contact such that both contacting points might 
change (see Fig. 1). The trial traction is calculated by considering the relative slip in incrementing 
timesteps and is stored in the common interface basis which is being defined in the average 
directions of the parametric lines of both surfaces at contact points.  
 
          !!"#$%&'( = !! + $$%(#')!"#* −#')!* )	 +*!"## − (+',!"#* −+',!* ) +*!"#+ ]	 	 	 	 	 	 	 	 	 (1)	
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Fig. 1  Contact points for two interacting surfaces

In the discrete description of surfaces, the contacting facets would also have a relative
angular motion. To take this into account, this work also introduces a methodology to consider the 
relative rotation between the two surfaces while accounting for the gradual transition in the stick-
slip state of friction. Here, a rotation opposing moment is introduced, the magnitude of which 
increments with the rotation of the two surfaces as

/!"#
$%&'( " /! # $-&0.!"# ( 0.!,

Similar to the restriction on the updating trial traction, the updating moment is restricted to a 

threshold which is defined as, /$0%120 " +
3 1243

5
6  , where 24 is the normal contact force and 4

is the area of contact.

An ensemble of numerical simulations is used to probe the performance of the presented 
methodology for frictional contact.
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Fretting wear induced by repetitive reciprocal tangential motion in contact interfaces is an important
phenomenon for numerous engineering systems including aerospace, automotive and marine compo-
nents as well as medical devices and electrical contacts. Wear simulation in such systems requires
predictive wear models which in turn can rely on frictional models. Numerous wear experiments report
a strong variation of wear performance for different material pairs, under various speeds, pressures and
sliding distances. Because of this complexity, several families of wear models could be constructed re-
lying on increasing number of parameters, which could include material parameters (elasto-plastic and
thermal ones), contact pressure and frictional resistance, their variations and history, surface roughness
and its evolution, environment, ratio of tangential amplitude to contact size, and others. Nevertheless,
quite often the study of wear is carried out using relatively simple wear criteria based on the dissipated
energy, which in turn is based on the simplest Coulomb friction law. In this study, we use an energy
based wear model coupled to friction models of increasing complexity. The key objective of the study is
to understand the effect of such an enhanced frictional rheology on wear profile in gross slip and partial
slip for the general case of bi-material contact interfaces.

Figure 1: Modern worn profile before and after wear-volume-preserving smoothing which also prevents
the worn profile from nonphysical spreading.

We use a finite-element computational framework which relies on few relatively novel techniques.
The first one is an implicit integration scheme that we use to update the worn profile after every macro-
cycle [1]. It has to be highlighted that contrary to more classical techniques for implicit wear update at
every Newton’s iteration loop, the implicit integration of wear over the entire fretting-cycle is relatively

1
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novel and has not been yet fully explored. It allows us to get rid of classical instabilities of explicit
integration schemes and to decrease the effective number of computed macro-cycles. The second orig-
inal technique is the smoothing procedure, which targets to properly evaluate the spatial distribution of
dissipated energy over every cycle (see Fig. 1). This new smoothing procedure, contrary to a classical
Gaussian smoothing [2], prevents unphysical spreading out of worn profile and preserves the overall
dissipated energy. These algorithms are implemented in in-house finite element software [3, 4] which is
equipped with standard remeshing algorithms for wear propagation and with a field transfer algorithm
needed for material models with history variables (visco-elastic and elasto-plastic ones). In addition, a
boundary unfitted technique combining the mortar method with the X-FEM is also available and per-
mits to avoid remeshing [5]. Three frictional models are studied: (C) Coulomb’s friction law, (S) a
slip-weakening friction with a recovery and (V) a velocity-weakening friction. Models (S) and (V) are
compared to reference result obtained with model (C) in terms of morphology of worn surface for a
cylinder-on-plane configuration for partial and gross slip. An example of slip-weakening friction from
static to kinetic friction µs to µk which also includes a recovery is given by

µ = µs +

(
(µd � µs)(1� exp(�d/d0)), if slip |v| > 0,

(µd � µs)(1� exp(�dmax/d0)) exp(�(t� t0)/t0), if stick |v| = 0,
(1)

where dmax is the maximal slip distance reached in the last slip at t = t0, d0 is a characteristic slip
distance and t0 is a characteristic time which controls return to the static friction at rest.

Elastic and elasto-plastic material models are studied, however damage accumulation responsible
for fretting fatigue is neglected, the focus is set up on wear modeling. From computational contact
mechanics’ point of view, this study addresses the heuristic stability of wear profiles and performance
of smoothing technique within surface-to-surface and node-to-segment contact discretizations. From the
physical point of view, novel results are obtained for the frequency effects on the wear within enhanced
frictional rheology.
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Engineered products often contain parts in contact along curved interfaces. Modelling such 
interfaces with faceted Finite Element (FE) meshes and traditional contact mechanics algorithms 
(e.g., penalty or augmented Lagrangian methods) works well for matched meshes with little to no 
relative movement. However, obtaining accurate solutions for non-matching meshes with large 
sliding behaviour requires fine mesh discretizations that can be computationally prohibitive for large 
models.
  
Mesh faceting can lead to modelling challenges, such as fringes on stress distributions resulting in 
artificially high stresses. Figure 1 shows the pathology when the white sphere is pressed and rotated 
against the red block. Various approaches exist to improve this problem such as penetration removal, 
offset algorithms and geometry-based contact, but they still present limitations affecting accuracy, 
stability, computational efficiency, or validity beyond small scale deformation. 

  

Figure 1. Resultant stress fringes for non-matching using traditional augmented Lagrangian 
contact 
 
In this work, an approach for surface reconstruction using node normals is adopted to alleviate these 
limitations, and the technique is implemented using SIERRA Mechanics [1], a FEM software for 
large-scale multiphysics simulations developed at Sandia National Laboratories. Using a node-face 
contact formulation, the face reconstruction was done with both Nagata [2] and Gregory [3] patches 
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and compared for accuracy, performance, and robustness. The developed algorithms show great 
promise in a variety of test problems, with better accuracy across many applications and faster 
convergence in non-linear implicit quasistatic analyses. 

This presentation will showcase how the new algorithm was developed and the details behind the 
final implementation. In addition to the patch reconstruction, different closest point projection 
algorithms based on gradient descent methods and the Nelder-Mead algorithm [4] were 
implemented. It is also shown how the use of simple problems from the literature influenced the 
choice of both the closest point projection algorithm and the patch type used. These simulations 
were only possible once the algorithm had been implemented within SIERRA, which led us to 
different default options compared to those originally considered based on results of small-scale 
problems. 

For usability, a curvature metric [5] was implemented that picks the most appropriate side for face 
reconstruction in the node-face interaction. The results comparing analytical solutions from the 
literature [6] as well as large-scale simulations are shown to demonstrate the advantages of this new 
approach.
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Figure 1: Convex segments representing (a) convex boundary (b) concave boundary.
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Figure 2: Contact cases for (a) convex boundaries (b) convex and concave boundaries.
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Structural analysis often involves contact mechanics, as mechanical systems typically feature 
static or dynamic contact between components. Examples of contact include meshing gears, 
forming processes, and simulating indentation, with impact analysis of structures being a crucial 
engineering application of contact. With composite laminated materials being increasingly used, 
it is essential to study the impact of contact, as it can result in localized damage and delamination, 
which can severely reduce the mechanical properties of a structure. The numerical modeling of 
contact is a current challenge in computational mechanics [1]. Over the last few decades, various 
techniques of varying complexity have emerged, e.g., node-to-node contact [2-3] and node-to-
surface [6-7], and surface-based [8-9]. Such techniques are, then, coupled with structural 
mechanics models and the Finite Element Method (FEM). For high-resolution results concerning 
stress and strain fields, 3D FEM is often required; however, the computational overhead of 3D 
can be prohibitive in many cases, e.g., laminated structures. This work proposes using 1D and 
2D models as alternatives to 3D. The Carrera Unified Formulation (CUF) is used to derive such 
reduced models based on higher-order expansions of the displacement field and ensure 3D-like 
accuracy for all the components of the stress and strain vectors.  The study focuses on normal, 
frictionless contact using a penalty method to enforce the contact constraints. With a view to the 
accuracy and the computational time required for analysis, different numerical models, such as 
higher-order CUF and 3D finite element models, are presented and compared. The results 
indicate that Layer-Wise CUF models require at least an order of magnitude fewer degrees of 
freedom and computational time than 3D finite element analysis and can furnish very accurate 
results regarding stress distribution.  
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In the general context of computational mechanics, contact simulation is a complex and essential
component in a large majority of diverse mechanical problems. In particular, high fidelity simulations of
material and structure problems require robust methods in the three main phases of contact simulation
which are detection, formulation and resolution. This work first focuses on contact detection, whose
robustness is imperative to avoid convergence problems and false results. Besides the robustness, contact
detection also has to deal with a wide variety of hypothesis, material behaviors, and physical phenomena
related to all kinds of contact problems. Each problem leads to different difficulties and detection
requests, requiring case-specific tools and techniques. For example, detection for auto-contact problems
is difficult because each mesh entity is near to its topological neighbors in the mesh, while they shouldn’t
be considered in contact. Another difficult case is contact of thin elements, because standard static
intersection tests can fail to detect any contact. These two cases therefore lead to more computations.

The detection phase consists in finding all pairs of elements from two meshes which are in contact, by
performing a given test (minimal distance, volume intersection...) on each pair of elements to evaluate if
it is in contact or not. Looping directly over all pairs of mesh elements isn’t an option since it represents
both too many and too heavy tests to compute. In the standard node-to-face discretization, one often
performs a contact detection based on a warning distance [1, 2], which is the distance below which
a slave node and a master face are considered in contact. To avoid looping over all possible pairs of
contact elements, a hierarchical data structure (Octree, KD-tree, BVH...) is built over the entities on one
side of the contact and greatly accelerates the search [3].

Figure 1: Iterative approximation with a Bounding Volume Hierarchy

This work aims to generalize this procedure, that is to develop a generic, robust and fast tool to
filter the mesh elements to test (global detection), and a generic and adaptive API for the local tests to
perform on the mesh elements (local detection). Such a contact detection tool is a major help in the
development of contact simulation for industrial applications. We develop a detection pipeline based
on Bounding Volumes Hierarchies (BVH) (see Figure 1), which are well-known data structures used
to solve a wide variety of computational geometry problems [4]. Meshes are iteratively approached by

1
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an increasing number of simplified geometric primitives (such as Axis Aligned Bounding Boxes) in a
hierarchical data structure (a binary tree) to perform a fast detection prediction without false negative.
Such structures are studied for more than 30 years in the computational contact mechanics and the video
game communities.

The approach we have developed leads to many optimizations of the global detection pipeline. One
of them is based on a tandem traversal algorithm described by Yang and Laursen [5] to search two
BVHs alternatively in a contact detection. With this approach, a BVH is built on each side of the
contact, and the search for contact elements uses both BVHs at the same time in order to benefit from
the hierarchical structure on both sides of the contact. We bring this approach a bit further by searching
both BVHs simultaneously. This contrasts with the standard approach using a single hierarchical data
structure on one single side of the contact.

In addition, complex detection operations have been developed. Vlack, Tachi and Cameron describe
the necessity of developing spatio-temporal intersection tests in contact detection [6, 7], which prevent
from missing contact occurring exclusively between two instants of the simulation (see Figure 2). The
use of spatio-temporal intersection tests is needed to define specific tests for the Bounding Volumes
(global detection) and between the mesh elements (local detection), but also to develop a robust detection
procedure in pathologic cases. Indeed, once the contact is detected and the corresponding constraints
are added to the simulation, slipping nodes stay very near to the interface, and a space-time intersection
based detection is not suitable anymore. Therefore, a specific procedure switching to normal projections
is needed to follow and update the contact pairs.

t t +�t

Figure 2: Contact between these two triangles can’t be detected by looking at t or t+�t
because it occurred exclusively between these two instants

This work will be presented with various examples to illustrate the performances of each approach.
It is developed in an external C++ template library integrated in the FEM solvers Manta and Z-set.
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Contact search is one of the key processes of contact simulation in structural analysis and is 
potentially the most expensive. In the case of large deformations where contact regions may evolve 
dramatically throughout the analysis, the process would have to be executed at every load- or time-
step or even at every iteration, which means that it could easily dominate the computing time. 
Contact search can generally be divided into two stages, namely global and local search, which are 
also known as ‘spatial search’ and ‘contact detection’ respectively. The former is associated with 
identifying pairs of surface discretisation units (nodes, segments, or both) which are potentially in 
contact, whereas the latter is associated with the determination of actual contacting pairs based on 
criteria usually set by the adopted contact constraint enforcement method. Over the past decades, 
various spatial search algorithms have been developed to drastically reduce the number of operations 
compared to the rudimentary ‘brute force’ algorithm, many involving bounding volume hierarchies 
and hierarchical face clustering [1]. An effective hierarchic search algorithm allows for unnecessary 
branches to be pruned as early as possible to forego unnecessary operations. Several hierarchic 
search algorithms have been developed over recent years for node-to-segment [2] and segment-to-
segment [3] contact. Many of these algorithms use binary trees where each non-leaf group in the 
hierarchy has exactly two child groups. However, notably in adaptive analysis, three-dimensional 
surfaces may feature localised regions of increased mesh density due to the presence of stress or 
geometric discontinuities. For segment-to-segment contact, the use of binary trees for such surfaces 
may result in the formation of additional hierarchical branches at these localised regions which do 
not contribute much to the accuracy of the spatial search yet introduce additional computational cost. 
Figure 1(a) demonstrates this issue, where the left-hand side (LHS) of the upper surface region is 
expected to have the same contact status as the right-hand side (RHS) depending on the value of the 
uniform gap ng , and hence going through all its hierarchical branches may not be necessary.  

The current work aims to overcome the aforementioned issue, drawing upon the assumption that, 
for two reasonably continuous surface regions which are potentially in contact, the localised regions 
of denser mesh will likely be subject to the same contact status as that of the adjacent areas of coarser 
mesh. Accordingly, a novel feature of the proposed method is its capability to generate clusters with 
a more even size distribution across each surface region in order to minimise unnecessary additional 
hierarchical branches at these localised regions of denser mesh. In the proposed method, rather than 
clustering adjacent pairs of units as per a binary tree (units being segments or clusters depending on 
the hierarchical level), cluster seed nodes are designated automatically based on two main criteria: 
(1) each seed node is approximately at a half-cluster distance away from the borders of adjacent 
clusters; and (2) adjacent clusters should share as many border nodes as possible. The result of 
adopting such criteria for the automatic selection of seed nodes is a clustering as shown in Figure 
1(b), where the LHS and RHS of the upper surface region will have clusters of more similar size as 
well as the same number of hierarchic levels. Although other choices of bounding volumes are 
possible, this work adopts spheres since these can be easily checked for overlap. The proposed 
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The virtual element method is a generalization of the finite element method for polytopal shapes and
arbitrary convergence order. Almost a decade has passed since its first introduction [1], and it has been
used for many applications where finite element methods dominated, especially those where geometrical
versatility of the elements was welcome. One such case is contact, where a whole novel approach for
Node-to-Node contact has been proposed based on this method for both 2D [2] and 3D [3].

Whereas new approaches are certainly valuable contributions to the state-of-art, investigating the use
of new tools for approaches that, despite their flaws, have stood up to the test of time, can also lead to
unexpected results and insights.

In this case, by approaches the authors refer to the penalty-based Node-to-Segment (NTS) method.
This contact scheme can be found in literature as early as 1976 [4], representing a departure from
Node-to-Node schemes where the contact location was required a priori. Although more modern (and
mathematically sounder) approaches are now available (e.g., Mortar methods), the Node-to-Segment is
still widely found in commercial finite element analysis software and employed by the industry due to
its low computational cost and sufficient accuracy for the intended purposes, justifying the interest in
penalty-based formulations, which does not add degrees of freedom to the system.

A modern detailed formulation of NTS can be found in [5]. The method is inherently flawed by
its asymmetrical treatment of the contact surfaces, this affects its capacity to provide a discrete contact
contribution to the problem’s weak formulation consistent with the adjacent continuum discretization,
which becomes evident in its patch test performance [6]. In the last years, some modifications of the
method have been proposed such that the patch test is passed for first-order interpolations, e.g., virtual
node schemes [7] and, more recently, an improved area regularization scheme [8]. Nevertheless, these
approaches focus only on first order elements and guarantee consistency of the contribution only for
uniform contact pressure, on other cases (e.g., Hertz contact) the solution is still inconsistent. For
quadratic polynomial onward, a new source of incompatibility on the treatment of the surfaces comes
into play: the different weights associated with extremities and in-edge nodes when computing the
equivalent nodal load for a distributed load over the segment.

This work presents another outlook on improving the stresses from Node-to-Segment contact schemes,
for first and higher order elements. Assuming the method’s incompatibility as something cannot not be
fixed without losing the simplicity which makes it attractive, the authors aim at reducing the consequent
oscillations in the stresses at element scale. This is done not by changing the contact scheme, but the
formulation of contact-adjacent elements from finite to virtual.

The reduction of intra-element oscillations in the stresses is a consequence on how stress results are
visualized with the virtual element methods, i.e., by taking the polynomial projection of the solution.
This projection effectively acts as a filter on these oscillations. This filtering effect may vary with the
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characteristics of the element used in the contact region, polygonal elements with over 5 sides have
shown the best results.

In Figure 1, one can see a detail of the minimum principal stress on contacting cylinders in a plane-
strain linear elastic model, such that the minimum stress according to Hertz’s theory should be �669.

Figure 1: Minimum principal stress (�3) for contacting cylinders in plane strain linear elasticity with
(a) quadratic triangular finite elements and (b) quadratic polygonal virtual elements

In the conference, a discussion and more examples of this filtering behavior will be provided, showing
its potential benefits while post-processing stresses stemming from contact interactions.

This work was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES) - Finance Code 001, and supported by Vale S.A. through the Wheel-Rail Chair project.
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We remind the reader of Dirichlet boundary condition and Lagrange multiplier: 
The calculation of static structures is based on the resolution of differential equations associated 
with boundary conditions, and in most cases requires the use of a numerical approach, wich is based 
on the search for solution fields belonging to a reduced admissible space Vr. 
In the conservative case, it translates to finding the minimum of the total potential energy of the 
structure among all the kinematically admissible fields of displacements belonging to Vr, 
i.e. verifying a priori Dirichlet conditions, non-homogeneous in the most general case, on 
a part ∂Ω1 of the boundary of the studied domain: 

min
∈ೝ

൬
1
2

𝑞்𝐾𝑞 − 𝑞்𝐹൰ 

𝑉𝑟 = {𝑞: 𝐴𝑞 = 𝑏  𝑜𝑛 𝜕𝛺1} 
Admissibility of displacements requires the introduction of bond strengths Fl such as 

 𝐹 + 𝐹 = 𝐾𝑞 
Given that dq verifies 𝐴𝑑𝑞 = 0, necessarily Fl is of the following form: 

𝐹𝑙 = −𝐴𝑇𝜆 
Where λ designates the vector of the Lagrange multipliers, which introduce additional  unknowns.  
Thus, we solve for the following matrix system: 

൬𝐾 𝐴𝑇

𝐴 0
൰ ቀ

𝑞
𝜆ቁ = ቀ𝐹

𝑏ቁ 
The solution trivially satisfies the Dirichlet conditions. These conditions are said to be associated 
because the binding forces At   are dual to the cinematic constraint. 
 
Let’s now consider a structure loaded on the one hand by a known loading F and on the other hand 
by a loading whose intensity is controlled by an inhomogeneous kinematic constraint of the 
form Aq = b: 

𝐾𝑞 = 𝐹 + 𝜆𝐺் 
Inspired by the previous associated formulation, we add  to the unknowns of the problem, and we 
use the formalism of Lagrange multipliers. The system to be solved therefore becomes: 

൬𝐾 −𝐺𝑇

𝐴 0
൰ ቀ

𝑞
𝜆ቁ = ቀ𝐹

𝑏ቁ 

 
Although similar, the multiplier is no more a Lagrange multiplier for it does not solve a minimization 
problem, and the matrix form is not symmetric. 
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The non-symmetry is unavoidable for the mechanical system is not conservative. The relationship 
is not associated because the reaction is no longer dual to the constraint. We can give the physical 
interpretation: 
- In an associated constraint, the verification of the relation is ensured by the introduction of 
binding strengths, also called reactions. The minimization of the mechanical energy of the system 
enforces the form of the reaction. It is the transpose of the constraint. 
-In a non-associated constraint, the bond strengths are arbitrary but serve the same to verify the 
constraint. 

 
Application to control: we define a non-associated condition whose primal part is the cinematic 
constraint and the dual part the control force vector. It is added to the mechanical stiffness of the 
system then we solve the total linear system. The load multiplier is directly solution of the problem. 
 
Application to Coulomb friction: One points out the definition of the contact-friction of Coulomb: 
The condition of contact in the normal direction is written: 

𝐷𝑛
𝑇𝑞 ≥ 0 

Either there is a positive play, or there is contact and  two reactions: a positive normal reaction 
Rn and a tangential reaction Rt linked by the relation: 

|𝑅𝑡| < 𝜇|𝑅𝑛|  
By adding the two multipliers n and t to the unknowns of the problem, the contact-friction is 

therefore described by the following two unilateral conditions: 

- Normal condition: ቆ 0 𝐷 − 𝜇𝐷௧
𝐷

் 0
ቇ ቀ

𝑞
𝜆

ቁ ≥ ቀ𝐹
0ቁ  

-  Tangential condition: ቆ 0 𝐷௧
𝐷௧

் 0
ቇ ቀ

𝑞
𝜆௧

ቁ ≥ ቀ0
0ቁ 

Which gives the complete asymmetric system: ቌ
𝐾 𝐷 − 𝜇𝐷௧ 𝐷௧

𝐷
் 0 0

𝐷௧
் 0 0

ቍ ൭
𝑞

𝜆
𝜆௧

൱ ≥ ൭
𝐹
0
0

൱ 

This linear system with unilateral conditions can be solved for example by an active set method 
taking in account the non positivity of K due to free modes or post buckling behavior. 

A fixed point scheme is then required to determine the unknown direction Dt.That one  is updated 
during the iterations, either using the displacement direction, or using the tangential reaction. The 
latter is given by (t - n)Dt, while the normal reaction is given by nDn. 

In 2D, the direction space is discrete, so the search can be merged in the active set search, and an 
exact solution is achievable in a finite number of iterations. 

In 3D the direction space is continuous, and a convergence criteria must be used. 
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Although much work has been invested in developing robust discretization methods for computa-
tional contact mechanics within the classical finite element method (FEM), some crucial drawbacks still
remain, i.e., the non-exact representation of curved contact surfaces and the limitation to C

0 continuity
at element boundaries. The latter leads to a non-continuous field of normal vectors, which requires
special treatment during the contact simulation and increases the complexity of the overall contact al-
gorithm. To overcome these drawbacks, contact approaches based on isogeometric analysis (IGA) have
been developed over the last decade. These use a NURBS-based mesh to represent complex contact
surfaces smoothly and can achieve arbitrary continuity at the element boundaries, eliminating the need
for special treatment of the contact normals [1]. However, for contact problems, the high regularity of
NURBS meshes in the whole domain of the body is not beneficial since it does not improve the spatial
convergence rate due to the reduced regularity of such problems (in the energy norm, the maximum ex-
pected order of convergence is O(h3/2) for a polynomial order of p � 2). Therefore, we propose to use
the NURBS interpolation only on the contact boundary, where the discontinuity appears, to represent
the contact surface smoothly.

Our proposed approach combines the advantages of IGA and FEM by separating the discretization of
the body’s contact interface and its interior. The contact interface, represented by a NURBS curve (2D)
or surface (3D), is extruded towards the domain’s interior to create a NURBS boundary layer mesh.
Moreover, the inner bulk volume is discretized in the reference configuration with a Cartesian finite
element mesh based on Lagrangian shape functions. The selection of a Cartesian finite element mesh
is advantageous since this type of mesh simplifies the overall meshing process and exhibits natural
compatibility with many aspects of parallel computing. Inevitably, some Cartesian finite elements,
known as cut elements, intersect with the inner surface of the IGA boundary layer mesh. These cut
elements are integrated using a tessellation approach [2]. Figure 1 illustrates the previously described
approach for an exemplary two-dimensional contact problem.

(a)

Cut element
Lagrangian element
NURBS element

Integrated domain

(b)

Figure 1: A two-dimensional unilateral contact problem (a), in which one of the bodies is discretized
following the proposed approach (b).
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The overlapping meshes are coupled by an appropriate embedded mesh method. For the time being,
a discrete Lagrange multiplier space along the lines of classical mortar methods will be defined on the
inner surface of the IGA boundary layer mesh. While this approach will deliver good results under
certain assumptions, we still expect possible stability issues in other scenarios due to the well-known
violation of the inf-sup condition [3].

This talk addresses the first steps towards stable discretization schemes for embedded mesh tying
constraints between a tailored NURBS boundary layer for contact treatment and an overlapping stan-
dard finite element grid. Furthermore, a number of different qualitative and quantitative examples are
presented in order to show the numerical properties of the proposed approach.
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One of the main tools for numerical simulation for solid mechanic problems is the finite element method. In
the industry, contact problems are omnipresent, and many traditional methods cannot provide acceptable solutions
in the context of elastodynamics: they are too influenced by parasitic oscillations or do not conserve energy. A
difficulty is that this type of problem has a non-linear boundary condition on the displacement field. The main
existing methods for discretizing the Signorini contact conditions are the method of penalization, mixed/mortar
methods, Nitsche’s method, or the augmented Lagrangian method. Improvements in the accuracy and numerical
robustness of these simulations are always expected by industry and researchers.

Usually, the time-space discretization involves the problems of choosing: (i) the finite element space; (ii) the
enforcement of the contact condition, and (iii) the time-stepping scheme.

The idea concerned in this work for treating the non-linear boundary condition is to transfer the constrained
optimization problems to an unconstrained problem or a sequence of unconstrained problems. Nitsche’s method
was introduced for contact problems firstly for frictionless unilateral contact in linear elasticity in [1]. The works
on dynamic contact with Nitsche’s method begin from frictionless case and with implicit scheme [2, 3]. Different
time-marching schemes can then be applied to discretize in time, e.g., [4, 5].

The first implementation of the augmented Lagrangian method (ALM) for contact problems with Coulomb’s
friction law was established by Alart and Curnier [6] and in recent years, convergence analysis for several refor-
mulations have been realized by Burman [7]. Few references can be found for applications in dynamics cases via
the augmented Lagrangian method (and finite element method). We can refer for instance the work of [8].

For structural dynamic problems, methods of time integration for second-order differential equations are re-
quired. The first tested scheme in this work, the HHT-↵ scheme is a classical and representative method for
elastodynamic problems proposed by Hilber, Hughes, and Taylor [9]. Another main scheme concerned in this
work is the TR-BDF2 scheme (also known as the Bathe scheme [10]) which is an implicit scheme with 2 sub-
steps: the first sub-step uses the trapezoidal rule and the second sub-step uses a three-point backward difference
approximation.

In this work, we focus on the evolution of the impact of a linear elastic body and a rigid obstacle. We want
particularly to study how to combine time-marching schemes as HHT-↵ and TR-BDF2 schemes with contact via
Nitsche’s method, with additionally the mass redistribution method or not. For instance, these two kinds of schemes
have not been applied with Nitsche’s method or ALM. We present then some simulation results with 1D and 3D
benchmarks using different methods. By testing their performances, we are particularly interested in the influence
of the numerical parameters, the parasitic oscillation associated with the contact surface due to the discontinuity
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in time, and the conservation or not of the total energy for the time-marching schemes. The new combinations
applied in this work can eventually improve upon existing methods by providing better accuracy and numerical
robustness for non-linear (and non-regular) dynamic problems.
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with finite element method.

The finite element method is widely used in computational mechanics to numerically solve problems

expressed as partial differential equations. For instance, engineering teams often perform finite element

numerical simulations to analyze the behavior of large hydraulic structures. In particular, the stability of

concrete dams is characterized by the nonlinear behavior of their weakest zones, that is their interface

zones, e.g., the concrete-rock contact in the foundation or the interface between different blocks of the

structure. As a simple approximation, the behavior of these zones could be mathematically represented

with some unilateral contact conditions with friction. Mathematically, these conditions can be written

by decomposing the displacement and surface stress into normal and tangential components on the

interface, i.e., u = unn + ut (displacement) and �(u)n = �n(u)n + �t(u) (surface stress). Then,

the following complementary condition represents the non-penetration conditions and the absence of

cohesive forces

un  0, �n(u)  0, un�n(u) = 0, (1)

while some suitable conditions involving �t(u) describe the presence of friction (e.g., Tresca or Coulomb

friction condition).

In this work, the goal is to extend the results of [1] to a wider range of problems. In particular, we

focus on unilateral contact problems with friction in which an elastic object represented by a domain

⌦ is initially in contact with a rigid foundation. From a numerical point of view, we use finite element

discretization with weak enforcement of contact boundary conditions à la Nitsche [2]. This choice

enables an easy implementation of the contact conditions in a weak sense without the introduction of

additional unknowns such as Lagrange multipliers.

We introduce an a posteriori error analysis for contact problems with friction based on equilibrated

stress reconstructions following the ideas of [3] and [4]. With this approach, we measure the error with a

dual norm of the residual operator, whose a posteriori upper bound does not involve unknown constants.

The error control can be performed locally through some a posteriori local estimators or globally through

the corresponding a posteriori global estimators. Furthermore, this method provides several advantages:

the estimators composing the upper bound distinguish the different components of the error (in the

considered problem discretization, linearization, regularization), they can be used to adaptively refine

the mesh, and to define some stopping criteria for the nonlinear solver and the automatic tuning of a

regularization parameter.

The key idea for constructing the a posteriori estimators is to introduce an equilibrated stress recon-

struction that locally satisfies some physical properties of the system. Motivated by the results of [4]
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and [5], we propose a practical way to obtain this reconstruction by assembling the solution of prob-

lems defined locally on patches around the vertices of the mesh using the Arnold-Falk-Winther mixed

element space [6].

This approach enables the development of a fully-automated algorithm that adaptively refines the

initial mesh. The obtained results can be compared to those coming from a uniform refinement tech-

nique. For instance, the numerical example of [1] shows that, for contact problems without friction, the

adaptive approach provides better convergence rates for H
1
- and energy norm, see Figure 1.

Figure 1: Comparison between uniform approach (circles) and adaptive one(triangles).
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One of the established approaches to enforce contact conditions is via Lagrange Multipliers (LM)
field, which is robust and implementation-independent from chosen material models. Consistent ap-
proximation of the LM field for h-refinement approaches have been developed and investigated [1, 2, 3].
However, p-refinement approaches are gaining increasing popularity with the standardisation of hierar-
chical basis functions along with proper choice of basis functions to meet the needs for different func-
tional spaces. For the case of contact problems, the space H

�1/2(�c) is the LMs for contact when
displacements are sought in the H

1/2(�c) space. In the present work, a so-called dual approach for
modelling contact of a deformable solid coming into contact with a rigid surface is proposed, and is
the first step towards a mortar contact formulation. The discrete functional space for LMs, H�1/2(�c)
defined on contact surfaces, �c, emerges from the trace of Raviart-Thomas space, RT ⇢ H(div;⌦),
defined in the deformable discretised body domain ⌦h. This enables us to evaluate some terms present in
contact formulation both on the boundary and within the volume, via Gauss theorem, providing stability
to the discrete solution.

In most of the approaches for solving the contact problem by means of LMs where the basis functions
have a support on the contact surface only. However, in the present implementation, LMs are defined
on the contact surface and are extended to the interior. Hence, these LMs basis functions have a support
both on a boundary element (edge in 2D and triangle/quadrilateral in 3D) as well as its adjacent domain
element (triangle/quadrilateral in 2D and tetrahedron/hexahedron in 3D). Construction of basis functions
for LMs, i.e. ⇤i 2 RT (⌦h), following work presented in [4], and where construction of basis functions
is available for triangels, qadrilaterals, tetraherda and hexahedra.

The model results are compared to more standard contact formulations for first order approximation
of LM field in H

1/2(�c) and the Wohlmuth dual space, W(�c) presented in [1]. All models are imple-
mented for two types of spatial discretisations for two dimentionalities of ambient space, i.e. triangles
and quadrilaterals for a 2D ambient space and tetrahedra and hexahedra for a 3D ambient space. For
all LM approximations and spatial discretisations, the models are compared to analytical and numerical
results for elastically deformable bodies.

Three versions of the discretisation of the contact problem statement presented in will be considered.
More precisely, the first two versions involve standard approaches for choosing the basis functions for
approximating contact traction t

(con)
i that is the same when choosing the functions being in standard

H
�1/2(�c) and the dual shape functions proposed by [1] denoted as W(�c) from now on. The third

version is the proposed one in this article that involves the choice of basis functions from RT space.
Preliminary results for a deformable body with a wave contact surface coming into contact with a

rigid flat for LMs sought in the H
1/2(�c) and in the the H(div;⌦) space are presented in Figure 1.
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Figure 1: (a) schematic of 2D deformable body with a wavy surface (with � amplitude and � wave-
length) coming into contact with a rigid flat surface, (b) comparison of analytical solution versus nu-
merical results for LMs sought in H

1/2(�c) and H(div;⌦) spaces and (c) is the zoom-in of (b) in the
proximity of the edge of the contact zone.

In Figure 1(c), it can be observed that for H1/2(�c) LMs present oscillations and negative values in
the vicinity of the end of the contact front. On the other hand, LMs sought in H(div;⌦) do not present
this discrepancy. The reason for the coordinate miss-match at which traction becomes zero between
analytical and the H(div;⌦) case is attributed purely to the spatial discretisation. More verification and
results are going to be investigated and discussed.
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Contact problems demand fine discretization resulting in expensive computations. The requirement
for parametric model order reduction (pMOR) emerges owing to computing time constraints. pMOR
is the process of reducing the dimension of a full scale model (FSM) while preserving parametric de-
pendencies. In this study, hyper reduction is carried out by approximating contact non-linearity using
a variant of discrete empirical interpolation method called QDEIM proposed by Drmac et al [1]. Local
and global pMOR techniques are used in this study to build parametric reduced order model.

Following equation can be used to illustrate the FE discretization of two bodies in contact [2]

M(p)ü + K(p)u + fn(u, p) = fext (1)

where, p is system parameter, M(p) 2 Rn⇥n is mass matrix, K(p) 2 Rn⇥n is stiffness matrix,
fn(u, p) 2 Rn is internal nonlinear force vector, fext 2 Rn is external force vector, and u is a dis-
placement vector. The governing equations (1) are projected onto a suitable low dimensional subspace
V leading to a reduced order model of the form

Mr(p)ür + Kr(p)ur + V(p)T fn(V(p)ur) = V(p)T fext (2)

where, Mr(p) = V(p)TM(p)V(p) and Kr(p) = V(p)TK(p)V(p). The relevant quantities in re-
duced dimension are indicated by subscript r. V 2 Rn⇥k is basis of subspace, V and it is obtained
using proper orthogonal decomposition (POD) [3] of snapshots of the FSM solution. One can com-
pute Mr and Kr in offline phase but the reduction V(p)T fn(V(p)ur) involves a full-scale dimension,
n. This bottleneck results in costly computations during reduction of nonlinear systems. To overcome
this, hyper-reduction of the nonlinear term must be performed. The nonlinear term is approximated by
projecting it on a suitable subspace U , as shown below

fn ⇡ Uc = f̂n = U(PTU)�1PT fn. (3)

Here, U 2 Rn⇥m is a matrix consisting of the basis of subspace, U and it is obtained by using POD of
snapshots of nonlinear terms in FSM. P is obtained by choosing specific columns from the n⇥n identity
matrix using QDEIM algorithm.

A single global basis across a parameter space and interpolating local bases are the two approaches
used to construct the pMOR [3]. Let, p = [p1, p2, ...., pK ] be a parameter set and Vi be the local basis
corresponding to pi. In the global approach, local bases are concatenated and a single basis is obtained
by performing singular value decomposition (SVD) on the concatenated bases. In second approach, the
local bases are interpolated on the tangent space to the Grassman manifolds.

These techniques are demonstrated for the standard Hertzian problem of two cylinders in contact. A
harmonic loading of 10sin(0.5t) KPa is applied to the top cylinder of 10 mm radius while the bottom
cylinder is of 15 mm radius. Considering the symmetry, the cylinders can be modelled as quarter
cylinders, as shown in Figure 1a. For simplicity, both the cylinders are assumed to be linear isotropic
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with Young’s modulus E, Poisson’s ratio 0.3 and density ⇢ = 1 tonne/mm3. For structural discretization,
four noded quadrilateral elements are employed, while for contact surface discretization, the node-to-
segment contact elements (frictionless) are used. Dynamic implicit analysis is carried out in MATLAB
using the Newmark-� method. E = [1000, 1500, 2000] MPa is used as a parameter set to build a pMOR.
Using this pMOR model, results are obtained for different E = 1750 MPa. Representative results are

Figure 1: (a) Two Cylinders in Contact, (b) Maximum Contact Pressure Vs Time

presented in Figure 1b, it depicts the maximum contact pressure Vs time, obtained using FSM with
2425 DOF, global and local pROM with 470 POD basis, and global and local pROM with 470 POD +
18 QDEIM basis. L2 norm error (4) and speed up in computation time are presented in Table 1.

L2 error =
k()FSM � ()ROMk2 ⇥ 100

k()FSMk2
(4)

Table 1: L2 error in contact pressure, Pc and speed up factor for different pMOR techniques

470 POD 470 POD + 18 QDEIM

L2 error in contact pressure, Pc

Global pMOR 0.0174 0.0232
Local pMOR 0.0172 0.0231

Speed up factor Global pMOR 16.94 46.14
Local pMOR 16.94 47.45

This study shows that, POD and POD+QDEIM based reductions are 17 and 47 times faster than
FSM with L2 error within bound. The indices obtained using QDEIM algorithm turns out to be indices
of nodes in contact.
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Soft bodies can significantly deform under gravity. For that reason, in many applications, they can
only by observed in highly deformed configurations. They can also undergo contact interactions with
external obstacles or as a result of self-contact. The inability to measure the unloaded (stress-free)
configuration, with additional difficulty to measure traction field at contact interfaces, poses problems
for modeling and calibration procedures for those systems. To this end, special modeling frameworks
have been developed which only used deformed configurations to estimate the material parameters of
large-deformation models, see, e.g, fixed-point (iterative) schemes [1, 4] in the context of modeling of
breast.

The most common are iterative schemes, which only utilize forward simulations to converge to a
desired unloaded configuration and calibrated material parameters. Their advantage is that they can be
straightforwardly used with any FE solver, but their drawback is that they are computationally expensive.
The computational efficiency can be greatly improved if applying direct inverse motion formulations [2]
as a basis for the calibration procedure. Those methods are based on inverse kinematics, in which the
deformed (current) configuration and loading are known while the undeformed configuration is to be
found.

Computed geometry
Known geometry

Inverse
 Hyperelastic

ity
Forward Hyperelasticity

Figure 1: Schematics of the inverse-forward problem used in the identification procedure [3].
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In this presentation, the inverse- and forward motion formulations will be combined to solve the pa-
rameter identification problem, see Fig. 1. The particular novelty of the presented approach is that
both measured loaded configuration can be in contact. The main idea is to parameterize the contact
traction field in one of loaded configurations and then identify those parameters together with material
parameters, as combined in a single vector �:

�⇤ = argmin
�

f(�) = argmin
�

X

i2nodes

( i(�)� ⇤
i )

2. (1)

In the identification, we use BFGS optimizer, for which the necessary gradients are obtained with the
direct differentiation method of sensitivity analysis. In the presentation I will discuss the performance
of the proposed framework, also for the noisy input geometries.
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(a) loaded configuration 1 (b) loaded configuration 2 (c) contact traction (section).
Figure 2: Identification of traction field [3]. The unknown traction field (c) is identified together with

the Young modulus and Poisson ratio, when having two deformed meshes as inputs (a-b).
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Recently Bluhm et al. [1] have effectively created an approach for including contact in topology op-
timization by adapting third medium contact [2]. The void phase is modeled as a highly compliant
nonlinear third medium, which becomes increasingly stiff under ultimate compression. Thus, when
ultimately compressed, the third medium can transfer forces between contacting regions of the solid
domain. Bluhm et al. [1] have shown promising results using this approach. This has opened the
opportunity for developing new topology optimized structures which exploit internal contact.

The present work presents the application of the third medium contact model to generate optimized
structures that use internal contact to achieve a design objective. A variety of mechanical systems,
including soft robotics and household appliances, as well as biomechanics and structures with inherent
safety, may benefit from the results presented in this work and the methods used to obtain them.

Results reveal that structures with internal contact developed by the third medium contact method
for topology optimization have promising features. This involves the creation of features that provide
internal self-support as a result of deformation, as well as features that decrease internal self-support as
a result of deformation. These findings may prove to be valuable in the design of compliant mechanisms
since the inclusion of contact expands the solution space, allowing for even better designs to be made.
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1

1Faculty of Civil Engineering, Czech Technical University in Prague, Prague 6, Czech Republic
E-mail: martin.horak, milan.jirasek@fsv.cvut.cz
2Department of Engineering, University of Palermo, Italy
E-mail: emma.lamalfaribolla@unipa.it

Keywords: Metamaterial, Hexagonal Lattice, Internal Contact, Geometrically Nonlinear Beam Element

Flexible and soft mechanical metamaterials with artificially designed microstructures have attracted

attention due to their unusual and tunable properties with applications in, e.g., soft robotics and energy

harvesting. Moreover, the interest in such materials has been increased hand in hand with the progress

in additive manufacturing, enabling the fabrication of the designed microstructures.

The classical mechanical metamaterials include, e.g., auxetic (negative Poisson’s ratio) metama-

terials [1], metamaterials with vanishing shear modulus, and topological metamaterials [2]. Another

exciting group of metamaterials consists of the so-called programmable materials whose properties can

be switched by external stimuli. To achieve such a behavior, we propose an architected hexagonal lat-

tice with an additional internal contact mechanism. Careful design and rearrangement of the underlying

contact mechanism lead to tunable stiffness, which can be adapted to a specific application.

The design of the proposed metamaterial relies upon a robust and efficient computational tool. The

development of such a tool is challenging mainly due to the internal contact and large deformations of

the lattice with a possibility to develop instabilities. Therefore, the adopted computational method is

based on the recently proposed geometrically exact beam element [3]. Moreover, the element formula-

tion is extended to incorporate the contact internally, leading to a very efficient formulation.
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[3] Jirásek, M., La Malfa Ribolla, E., Horák, M. Efficient finite difference formulation of a geometri-

cally nonlinear beam element. Int J Numer Methods Eng, 122, 7013–7053 (2021).

1

155



  

156



Still on the Shifted Penalty Method 
 
Giorgio Zavarise 
Department of Structural, Geotechnical and Building Engineering, Politecnico di 
Torino, Italy 
E-mail: giorgio.zavarise@polito.it 

 
Keywords: Contact mechanics, Penalty method, Augmentation 
 
The classical penalty method is widely used in Contact Mechanics since it permits the enforcement 
of contact constraints without variation of the problem size. The main drawback of the method is 
due to the penetration among the surfaces that affect the solution. 
It has been proved that the shifted modification can rapidly reduce the penetration among the 
contacting surfaces without introducing any additional set of forces or new unknowns into the 
global stiffness matrix [1].  
To evidence the main characteristics of the method, we start from the total potential, Π 
 

Π → #$%,			(! ≤ 0 
 
where (! is a signed measure of the distance among the bodies (gap), and the inequality constraint 
enforces the non-penetration of the solid bodies The best definition of the penalty method in given 
in the Luenberger’s book [2], stating that the penalty approximation is accomplished by “adding to 
the objective function a term that prescribes a high cost for violation of the constraints”. 
Considering the classical example of two elastic bodies, the above problem can be rewritten as 
 

Π = Π"(-") + Π#(-#) + Π$(0%) → #$% 
 
where Π"and Π# represent, respectively, the total potential of body 1 and body 2; Π$ is the 
contact-penalty contribution and 0! represents the set of normal gaps. The contact potential, Π$, is 
provided by the classical penalty contribution	Π$ = ∑ 1 2⁄ 7(!!&' , where the penalty parameter, 7, 
determines the quality of the approximation. The main drawback of this method is because the 
constraints can be exactly satisfied only for 7 → ∞, and several methods have been proposed to 
deal with [3-7]. Nowadays the issue of the optimal choice of the penalty is usually hidden in the 
commercial codes, with an automatic estimate of the penalty parameter. 
The penalty method is characterized by a strong transition between the open and closed states. On 
the contrary, the shifted penalty method is characterized by a smooth transition among the open 
and closed state. It consists into a dynamic shift of the application point of the unconstrained 
potential modification. Hence, contact constraints are apparently enforced in the open state, but in 
this way the minimum of the potential can be shifted back at the constraint limit. For this scope we 
introduce a shift, 9, as a new variable  
 

Π = Π"(-") + Π#(-#) + Π$(0%, :) → #$% 
 
The above potential is minimized assuming first a constant value for the shift, which is then 
updated at every iteration within the newton loop.  
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ΔδΠ"(-")Δ(-")δ(-") + ΔδΠ#(-#)Δ(-#)δ(-#) + ΔδΠ$(0!, :)Δ(0!)δ(0!)
+ ΔδΠ$(0!, :)Δ(:)δ(0!) = = 

 
Indeed, this results into the new contribution ΔδΠ$(0!, :)Δ(:)δ(0!), but the shift update is 
simply performed enforcing that the its variation should correspond to the current penetration. 
 

Δ(:) = 0! 
 
The results achieved till now are very promising, and there are several new perspectives that 
should be explored in detail. 
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