
Scientific Committee 

Laura Angeloni (University of Perugia) 

Rosanna Campagna (University of Campania ) 

Michele Campiti (University of Salento) 

Roberto Cavoretto (University of Torino) 

Clemente Cesarano (University Uninettuno) 

Costanza Conti (University of Firenze) 

Francesco Dell'Accio (University of Calabria) 

Stefano De Marchi (University of Padova) 

Elisa Francomano (University of Palermo) 

Vita Leonessa (University of Basilicata) 

Donatella Occorsio (University of Basilicata) 

Lucia Romani (University of Bologna) 

Maria Grazia Russo (University of Basilicata) 

Alvise Sommariva (University of Padova) 

Gianluca Vinti (University of Perugia) 
  

Organizing Committee 

Michele Campiti (University of Salento) 

Vita Leonessa (University of Basilicata) 

Donatella Occorsio (University of Basilicata) 

Maria Grazia Russo (University of Basilicata) 

 

Organizing Secretary 
Daniela Dell’Anna (University of Salento) 

 

Speakers 

Mirella Cappelletti Montano (University of Bari) 

Danilo Costarelli (University of Perugia) 

Kai Diethelm (THWS, Germany) 

Filomena Di Tommaso (University of Calabria) 

Maryam Mohammadi (University of Padova) 

Ioan Raşa (Technical University of Cluj-Napoca) 

 

Special session on some open problems in Approximation Theory: 

Francesco Altomare (University of Bari) 



Program of the Conference ATMA2024 

 

11 giugno 
The registration will be opened from 15:00 until 18:00 in the Conference Hall 
16:00 – 17:00 Poster session 
17:00 – 18:00 Welcome Cocktail  
18:00 – Guided Tour in Lecce 

 

12 giugno 
9:00 – 9:30 Opening Ceremony 
Chairman: Roberto Cavoretto 
9:30 – 10:10 Danilo Costarelli  

Approximation properties and applications of sampling-type operators 
10:15 – 10:55 Filomena Di Tommaso  

Multinode Shepard method: theory and applications 
10:55 – 11:25 Coffee break 
Chairman: Laura Angeloni 
11:25 – 11:40 Lorenzo Boccali, Danilo Costarelli, Gianluca Vinti  

Approximation by Max–product Sampling Kantorovich operators: quantitative 
estimates in Functional Spaces 

11:45 – 12:00 Marco Cantarini, Danilo Costarelli, Gianluca Vinti  
Approximation properties of Sampling Kantorovich operators in Sobolev settings 

12:05 – 12:20 Rosario Corso, Gianluca Vinti  
Mean sampling Kantorovich operators 

12:25 – 12:40 Eleonora De Angelis, Danilo Costarelli, Gianluca Vinti  
Convergence and order of approximation for perturbed operators 

12:45 – 13:00 Ivan Gadjev  
On the constants in Hardy Inequalities in Lp and lp 

13:05 – 13:20 Vincenzo Schiano Di Cola, Marco Berardi, Salvatore Cuomo  
Approximation Techniques for Environmental Modeling: Insights and 
Applications 

Pausa Lunch 
Chairman: Alvise Sommariva 
15:00 – 15:15 Valerii A. Galkin (online)  

Approximations of Topological Structures in Flows Described by Navier-Stokes 
Equations for Incompressible Fluid  

15:20 – 15:35 Yuan Xu  
Minimal cubature rules and interpolation on the square 

15:40 – 15:55 Francesca Acotto, Ezio Venturino, Iulia Martina Bulai  
Interaction between individualistic predators and responsive herd of prey 

16:00 – 16:15 Kaido Lätt, Arvet Pedas  
Approximate solution of singular fractional integro-differential equations 

16:20 – 16:35 Svilen S. Valtchev  
Meshfree Domain Decomposition Methods with Fundamental Solutions for 
Elliptic Boundary Value Problems 

16:40 – 17:10 Coffee break 
17:10 – 19:00 Groups Assemblies (RITA, TAA, ANA&A) 

 



13 giugno 
Chairman: Maria Grazia Russo 
9:00 – 9:40 Kai Diethelm  

The Approximation of Power Functions with Exponents in (–1, 0) by Sums of 
Exponentials and Its Applications 

9:45 – 10:25 Maryam Mohammadi, Mohammad Heidari, Stefano De Marchi, Milvia Rossini 
How differential geometry works in the RBF approximation theory! 

10:25 – 10:55 Coffee break 
Chairman: Donatella Occorsio 
10:55 – 11:10 Jean–Paul Berrut, Richard Baltensperger, Malika Jan  

Rational sinc interpolants and point shifts 
11:15 – 11:30 Alvise Sommariva, Marco Vianello  

On unisolvence of unsymmetric random Kansa collocation 
11:35 – 11:50 Giacomo Elefante, Alvise Sommariva, Marco Vianello  

CQMC: Tchakaloff–like compression of QMC integration 
11:55 – 12:10 Francesco Marchetti, Tizian Wenzel, Emma Perracchione  

A machine learning perspective for optimized kernel–based approximation 
12:15 – 12:30 Gianluca Audone, Francesco Della Santa, Emma Perracchione, Sandra 

Pieraccini  
Variably Scaled Kernels: A Deep Learning Approach to Adaptive Scale Selection 

12:35 – 12:50 Leokadia Białas-Cież, Mateusz Suder 
Evaluating Lebesgue constants by Chebyshev polynomial meshes on cube, 
simplex and ball 

12:55 – 13:10 Dimitri Jordan Kenne 
Chebyshev admissible meshes and Lebesgue constants of complex polynomial 
projections 

Pausa Lunch 
Chairman: Stefano De Marchi 
15:00 – 15:40 Open problems conference: Francesco Altomare, Local approximation 

problems and Korovkin–type theorems 
15:45 – 16:00 Domenico Mezzanotte, Luisa Fermo, Donatella Occorsio  

A global method for Volterra-Fredholm integral equations 
16:05 – 16:20 Luisa Fermo, Domenico Mezzanotte, Donatella Occorsio  

Numerical treatment of mixed Volterra-Fredholm integral equations 
16:20 – 16:50 Coffee break 
Chairman: Lucia Romani 
16:50 – 17:05 Mikk Vikerpuur, Arvet Pedas  

Approximate solutions to linear fractional integro-differential equations 
17:10 – 17:25 Rumen Uluchev, Ivan Gadjev, Parvan Parvanov  

Recent Progress in Weighted Lp-Approximation of Functions by Kantorovich-type 
Operators 

17:30 – 17:45 Borislav R. Draganov  
Approximation by Kantorovich sampling operators in variable exponent 
Lebesgue spaces 

19:45 –  Social dinner and Musical show (Music and dancing from Salento) 
 

  



14 giugno 
Chairman: Vita Leonessa 
9:00 – 9:40 Ioan Rasa, Ana-Maria Acu (online) 

Positive linear operators, convexity and approximation (online conference) 
9:45 – 10:25 Mirella Cappelletti Montano, Francesco Altomare, Vita Leonessa  

Representation formulae for strongly continuous semigroups in terms of 
integrated means and related approximation processes 

10:25 – 10:55 Coffee break 
Chairman: Clemente Cesarano 
10:55 – 11:10 Gheorghe Bucur  

Multiplicative Characteristic Functions 
11:15 – 11:30 Ileana Bucur  

Multiplicative Characteristic Functions 
11:35 – 11:50 Harun Karsli  

On wavelet type Chlodovsky Operators and their Bézier-type variants 
11:55 – 12:10 Geno Nikolov  

Bounds for the Extreme Zeroes of Jacobi Polynomials 
12:15 – 12:30 Francesco Esposito  

Holomorphic  L2 signals of several complex variables 
12:35 – 12:50 Domenico Vitulano, Vittoria Bruni, Silvia Marconi  

A Formal Approximation of CNN Filters 
12:55 – 13:10 Conference closure 
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Approximation by Truncated Bivariate Favard-Szász-Mirakjan
Operator of Max-product Kind

Ecem ACAR
Department of Mathematics and Science Education, Harran University

The purpose of this paper is to introduce nonlinear bivariate Truncated Favard-Szasz-Mirakjan
operators of max-product kind. Then, we give an error estimation for the bivariate Truncated
Favard-Szasz-Mirakjan operators of max-product kind by using a suitable generalizition of the
Shisha-Mond Theorem. There follows an upper estimates of the approximation error for some
subclasses of functions. Additionally, shape-preserving properties of these new operators have
been studied.
References
[1] Bede, B., Gal, S.G., Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan op-

erators of max-product kind. J. Concr. Appl. Math. 8(2), 193207, (2010)
[2] Bede, B., Coroianu, L., and Gal, S. G., Approximation by truncated FavardSzászMirakjan

operator of max-product kind. Demonstratio Mathematica, 44(1), 105-122, (2011).
[3] Bede, B., Coroianu, L., Gal, S.G., Approximation by Max-Product Type Operators.

Springer, Cham (2016)
[4] Acar, E., Özalp Güller, Ö., Krc Serenbay, S., Approximation by nonlinear Bernstein-

Chlodowsky operators of Kantorovich type, Filomat 37(14) , 46214627, (2023).

E–mail: karakusecem@harran.edu.tr.



Interaction between individualistic predators
and responsive herd of prey

Acotto Francesca, Venturino Ezio
Department of Mathematics “Giuseppe Peano", University of Turin

Bulai Iulia Martina
Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari

The choice to live in group is one of the strategies that some prey use to defend themselves
against predator attacks and is therefore classified among behavioral defense mechanisms. For
example, we can refer to the savannah biome, focusing on big herbivores and some of their preda-
tors. The predator hunting on herding prey can be modeled by observing that the individuals
most likely to be affected by the attack are those on the herd perimeter.

The benefits that the aggregation brings for prey increase with the size of the herd. A large
herd of big herbivores can discourage hunting attempts by predators, who are frightened, fearing
that they in turn will be struck back and injured. This happens especially in cases where other
structural elements of passive defense are present, such as strong horns, in addition to the size.

To model this feature, we depart from the Holling type II functional response reformulated
to account for prey herding. We consider a denominator of the Beddington-DeAngelis form and
a function Φ(N,α) in the numerator, denoting by N the number of prey per spatial unit as
a function of time and 1

2 ≤ α < 1 the shape index, instead of Nα. This function behaves as
N for small values of N and as Nα for large values of N , in agreement with the fact that as
the members of the herd decrease they each tend to interact individually with the predators.
Further, in the denominator, we use a binary-value parameter that allows us to take or not take
into account the prey response to predator attacks, depending on the prey species considered.

The equilibrium points that the model admits are the origin, the predator-only equilibrium, the
predator-free equilibrium, and two, one or no coexistence points. At the coexistence equilibrium,
the model shows that prey and predators thrive respectively in larger and smaller numbers than
in the previous two-population systems for individualistic predator and herding prey. The first
three equilibria are unconditionally feasible, while coexistence is conditionally feasible. Only the
coexistence and predator-only equilibrium can be locally asymptotically stable. Transcritical
bifurcations from the first of these last two equilibria to the second one are possible. In addition,
saddle-node bifurcations have been numerically identified. Furthermore, there are combinations
of parameter values for which simultaneously these two equilibria are admissible and locally
asymptotically stable. In these cases, the equilibrium toward which the system converges depends
only on the initial conditions. This bistability has been numerically explored using bSTAB.

References
[1] F. Acotto, E. Venturino, How do predator interference, prey herding and their possible retal-

iation affect prey-predator coexistence?, AIMS Math. 9 (2024).
[2] F. Acotto, E. Venturino, Modeling the herd prey response to individualistic predators attacks,

Math. Methods Appl. Sci. 46 (2023).
[3] F. Acotto, I.M Bulai, E. Venturino, Prey herding and predators’ feeding satiation induce

multiple stability, Commun. Nonlinear Sci. Numer. Simul. 127 (2023).

E–mail: francesca.acotto@unito.it.



Local approximation problems and Korovkin-type theorems

Francesco Altomare

Department of Mathematics, University of Bari Aldo Moro, Italy

The starting point of the lecture is a result due to P. P. Korovkin (1953) which states that,
given a real interval I, a linear subspace E of real-valued functions on I containing the functions
1(t) := 1, e1(t) := t and e2(t) := t2 (t ∈ I) and a sequence (Ln)n≥1 of positive linear operators
on E, then for every compact subintervals K of I and for every bounded function f ∈ E which
is continuous on each point of K, one gets

lim
n→∞

Ln(f) = f uniformly on K,

provided that the same limit formula holds true for the three above mentioned functions 1, e1
and e2.

This result contains, as a very special case, the most renowned theorem of Korovkin which
concerns the case where I is compact, E = C(I) and K = I.

As it is well-known, this last theorem originated a plenty of extensions, generalizations and
applications which are documented in several monographs as well as in hundred of papers (see,
e.g., [1] - [5] and the references therein).

The above mentioned more general theorem of Korovkin seems to be potentially useful to
investigate, even for the most well-studied approximation processes, some local approximation
problems for bounded locally continuous functions de�ned on not necessarily compact domains
(for which the more famous special case cannot be applied).

For these reasons very recently ([2] - [4]) we started a series of investigations whose main aim
is to ascertain to what extent this result can be extended and generalized and, in particular,
whether the functions 1, e1 and e2 can be replaced by other test functions or whether there
is the possibility to obtain similar results in multidimensional as well as in in�nite dimensional
settings even considering, as a limit operator, a general positive linear operator T : E → F (X).

The talk will be devoted to present some of the main results obtained along these directions
together with some applications and open problems.

References

[1] F. Altomare, Korovkin-type theorems and approximation by positive linear oper-

ators, Surv. Approx. Theory 5 (2010), 92-164, free available online at
http://www.math.technion.ac.il/sat/papers/13/, ISSN 1555-578X.

[2] F. Altomare, On positive linear functionals and operators associated with generalized means,

J. Math. Anal. Appl. 502 (2021), no. 2, Paper No. 125278, 20 pp.

[3] F. Altomare, Korovkin-type theorems and local approximation problems, Expo. Math. 40
(2022), no. 4, 1229-1243.

[4] F. Altomare, Local Korovkin-type approximation problems for bounded function spaces, Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, (2024) 118:88.

[5] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de
Gruyter Studies in Mathematics 17, W. de Gruyter, Berlin, New York, 1994.
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Variably Scaled Kernels: A Deep Learning Approach to Adaptive
Scale Selection

Gianluca Audone, Francesco Della Santa, Emma Perracchione, Sandra Pieraccini
Department of Mathematical Sciences "Giuseppe Luigi Lagrange" (DISMA), Politecnico di

Torino

Variably Scaled Kernels (VSKs) methods have gained popularity in the context of meshfree
approximation, due to their adaptability to local data characteristics, offering improved accuracy
and flexibility compared to traditional fixed-scale kernel methods. Their effectiveness though is
dependent on the choice of a scaling function which can be thought of as a continuous version
of the shape parameter. Previous research suggests that a scaling function mimicking the target
function can improve approximation results, but this claim lacks rigorous theoretical evidence.

This work addresses these issues by providing theoretical justification for the claim, demon-
strating using the Lebesgue function that a scale function reflecting the target function’s be-
haviour leads to enhanced approximation accuracy. We also propose a user independent way of
choosing the scaling function by training a discontinuous neural network to learn the "optimal"
scaling function directly from data.

Our results confirm the theoretical findings: the learned scaling function closely resembles
the target function, leading to improved approximation performance in various scenarios. This
data-driven approach for scale function selection offers a user-independent, adaptive solution for
enhancing the accuracy and flexibility of VSKs in meshfree approximation tasks.

References
[1] G. E. Fasshauer, M. McCourt, Kernel-based Approximation Methods using MATLAB, World

scientific, 2015.
[2] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2004.
[3] M. Bozzini, L. Lenarduzzi, M. Rossini, R. Schaback, Interpolation with variably scaled kernels,

IMA J. Numer. Anal. 35 (1) (2015) 199–219.
[4] M. K. Esfahani, S. De Marchi, F. Marchetti, Moving least squares approximation using vari-

ably scaled discontinuous weight function, Constr. Math. Anal. 6 (1) (2023) 38–54.
[5] S. De Marchi, W. Erb, F. Marchetti, E. Perracchione, M. Rossini, Shape-driven interpolation

with discontinuous kernels: Error analysis, edge extraction, and applications in magnetic
particle imaging, SIAM J. Sci. Comput. 42 (2) (2020) B472–B491.

[6] E. Perracchione, F. Camattari, A. Volpara, P. Massa, A. M. Massone, M. Piana, Unbiased
clean for stix in solar orbiter, Astrophys. J. Suppl. S. 268 (2) (2023).

[7] F. Della Santa, S. Pieraccini, Discontinuous neural networks and discontinuity learning, J.
Comput. Appl. Math. 419 (2023).

[8] P. Kidger, T. Lyons, Universal approximation with deep narrow networks, Vol. 125, 2020, pp.
2306–2327.

1Acknowledgments: GA and EP acknowledge the support of the Fondazione Compagnia di San Paolo
within the framework of the Artificial Intelligence Call for Proposals, AIxtreme project (ID Rol: 71708)

E–mail: gianluca.audone@polito.it.



Rational sinc interpolants and point shifts
Jean-Paul Berrut

Department of Mathematics, University of Fribourg
Richard Baltensperger

University of Applied Sciences and Arts Western Switzerland, Fribourg
Malika Jan

Lycée-Collège de la Planta, Sion

The interpolation of functions with steep gradients is greatly improved by putting more points
in the vicinity of these gradients. In pseudospectral methods, a conformal map of the domain
is used for that purpose and classically introduced into the polynomials replacing the functions
appearing in the differential equation. The exponential convergence is conserved, when the in-
terpolation/collocation points are zeros or extrema of orthogonal polynomials. However, because
of the use of the chain rule, this leads to complicated differentiation matrices.

To avoid the latter, the first two authors have suggested in 2001 to use a linear rational
barycentric interpolant introduced in [1] instead of the usual polynomial one when solving a dif-
ferential equation on an interval. Differentiation formulas as simple as those of the interpolating
polynomial [2] lead to systems that are themselves as simple as those of the classical polynomial
pseudospectral method [3]. The effect of the maps is impressive [4,5].

The first author has studied the effect of conformal shifts in the (Fourier) periodic case [6].

In the present work we treat the approximation on the infinite line, replacing the sinc inter-
polant with a limit of linear rational sinc ones, and we show that, here as well, the exponential
convergence is conserved with the conformal map. We also demonstrate through numerical
examples how point shifts greatly improve the interpolant’s accuracy for the approximation of
functions with steep gradients. Moreover, since we start with equispaced points instead of Cheby-
shev ones, the precision is even better than with the linear rational interpolant at conformally
shifted Chebyshev nodes mentioned above.

References
[1] Berrut J.–P., Rational functions for guaranteed and experimentally well–conditioned global

interpolation, Comput. Math. Appl. 15 (1988), 1–16.
[2] Baltensperger R., Berrut J.–P., Noël B., Exponential convergence of a linear rational inter-

polant between transformed Chebyshev points, Math. Comp. 68 (1999), 1109–1120.
[3] Berrut J.–P., Baltensperger R., The linear rational pseudospectral method for boundary value

problems, BIT 41 (2001), 868–879.
[4] Berrut J.–P., Mittelmann H. D., Optimized point shifts and poles in the linear rational pseu-

dospectral method for boundary value problems, J. Comput. Phys. 204 (2005), 292–301.
[5] Tee T. W., Trefethen L. N.,A rational spectral collocation method with adaptively transformed

Chebyshev grid points, SIAM J. Sci. Comput. 28 (2006), 1798–1811.
[6] Baltensperger R., Some results on linear rational trigonometric interpolation, Comput. Math.

Appl. 43 (2002), 737–746.

E–mail: jean-paul.berrut@unifr.ch - richard.baltensperger@hefr.ch - malika.jan@edu.vs.ch.



Evaluating Lebesgue constants by Chebyshev polynomial meshes
on cube, simplex and ball
Leokadia Białas-Cież, Mateusz Suder

Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków

We will show that Chebyshev-type polynomial meshes can be used, in a fully discrete way, to
evaluate with rigorous error bounds, the Lebesgue constant (i.e. the maximum of the Lebesgue
function), for a class of polynomial projectors on cube, simplex and ball, including interpolation,
hyperinterpolation and weighted least-squares. Several examples will be shown. Moreover, we
will present some optimal admissible meshes for ball and simplex, based on Chebyshev nodes
and we will compare them with other recently studied point sets by giving numerical evaluations,
using the covering radius related to the Dubiner distance.

The talk will be based on two recent papers [1] and [2].

References
[1] L. Bialas-Ciez, D. Kenne, A. Sommariva, M. Vianello, Evaluating Lebesgue con-

stants by Chebyshev polynomial meshes on cube, simplex and ball, submitted,
https://arxiv.org/abs/2311.18656, 2023.

[2] L. Bialas-Ciez, M. Suder, Note on admissible meshes on ball and simplex via Dubiner metric,
submitted.

E–mail: leokadia.bialas-ciez@uj.edu.pl - mat.suder@student.uj.edu.pl.



Approximation by Max-product Sampling Kantorovich
operators: quantitative estimates in Functional Spaces

Lorenzo Boccali
Department of Mathematics and Computer Science “Ulisse Dini", University of Florence

Department of Mathematics and Computer Science, University of Perugia
Danilo Costarelli, Gianluca Vinti

Department of Mathematics and Computer Science, University of Perugia

In [3], we started to face the problem of convergence for the so-called max-product sampling
Kantorovich operators Kχ

n based upon generalized kernels in the setting of Orlicz spaces Lφ,
establishing a modular convergence theorem for the approximation of non-negative functions
defined on both bounded intervals [a, b] and on the whole real axis. This non-linear (more pre-
cisely, sub-additive) version of Kantorovich sampling operators, obtained by replacing the series
(or sum for finite terms) of the linear case [1] by the supremum (or maximum for finite terms),
denoted in the literature (see, e.g., the monograph [2]) by the symbol

∨
, has been introduced

in [4]. Here, the authors studied their approximation properties, including convergence results
and quantitative estimates, in the continuous setting and in Lp-spaces, 1 ≤ p < +∞. Since, as
it is well known, the latter functional spaces, among many others, can be considered particular
cases of Orlicz spaces, the treatment in this general setting allows us to develop a unifying theory
that covers a wide class of functions, including the not-necessarily continuous ones, that are very
common in applications of signal and image processing.
In the present talk, we will show a recent study on the order of approximation of Kχ

n in Lφ

via a quantitative estimate established using the Orlicz-type modulus of smoothness, introduced
by means of the modular functional defined on the space if the approximation of functions
f : R → R+

0 is considered. This result allows us to obtain the qualitative order of approximation
for functions belonging to suitable Lipschitz classes. Furthermore, we also present an analogous
study in the compact case [a, b], where, due to technical reasons, it is preferable to work with
K-functionals [5] in place of moduli of smoothness in order to obtain an upper bound for the
modular of the error of approximation.
Finally, some specific examples of kernels of Kχ

n for which the main presented results can be
applied, will be taken into account.
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We consider two arbitrary non empty sets X,Y and a map

D : X × Y → R.
On the setX we consider the uniform (respectively pointwise) topology associated to this duality.
Similar topologies are considered on the set Y . We show that X is relatively compact w.r. to
the uniform topology i� Y is relatively compact w.r. its uniform topology.

Shmulyian�Eberline result is obtained for the pointwise topologies
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Very often, in Mathematics, the object we are dealing with is decomposed into other objects
much simpler to understand. In this paper we introduce the concept of �multiplicative charac-
teristic function� on an arbitrary set X and we give a general representation theorem of any
function f : X → [0, 1] as a uniform limit of �nite products of such type of functions.

This result may be fruitfully used in measure theory, distribution theory. Some consequences
in uniform approximation of continuous functions are presented here.
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A bivariate regression model is presented as an extension of univariate Hyperbolic-Polynomial
penalized splines (HP-splines) [1]. The univariate basis requires the selection of a suitable fre-
quency parameter, for which a data-driven procedure is available [2]. The proposed approach
combines the alternating construction of univariate HB-spline basis functions along both coor-
dinates and the tensor product structure to capture interactions between the two dimensions
[3]. First results are provided and compared with state-of-art smoothers [4], according to the
selected smoothing parameters. Numerical results are promising for further investigations and
application to Gaussian surface approximation.
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In this talk, we will analyze some approximation results of Kantorovich-type sampling op-
erators in the context of classical and fractional Sobolev spaces settings. In particular, in the
fractional case, we will show some approximation properties for a new class of Sobolev spaces
based on the well-known Gagliardo fractional Sobolev spaces and a class of recently introducted
Sobolev spaces by Feng and Sutton.
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The aim of the talk, which is based on the paper [1] and [2], is to present some representation
formulae for strongly continuous semigroups on Banach spaces, in terms of limits of integrated
means with respect to some given family of probability Borel measures and other parameters.
Estimates of the rate of convergence by means of the rectified modulus of continuity and the
second modulus of continuity are also provided.

The cases where the representation formulae hold true pointwise or uniformly on compact
subintervals are discussed separately. In order to face them different approaches have been used:
the former case has been studied by using purely functional-analytic methods, the latter one
by involving methods arising from Approximation Theory. To this purpose, a suitable and very
general sequence of positive linear operators, acting on continuous function spaces on an arbitrary
real interval, has been introduced.

In the talk, we also discuss in detail the approximation properties of such a sequence in
the context of weighted spaces of continuous functions, with respect to wide classes of weights.
In particular, pointwise estimates and weighted norm estimates of the rate of convergence are
presented, together with a weighted asymptotic formula.
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As well-known, generalized sampling operators and sampling Kantorovich operators are able to
approximate continuous signals and even Lp-signals in the latter case. Anyway, in the situation
of a signal a�ected by a noise, these operators are not very e�cient to approximate the cleaned
signal (i.e., �ltered by the noise) when the parameter goes to in�nity. In order to solve this
problem, we introduce a new type of operator, which we call the mean sampling Kantorovich op-
erator, we study its approximation properties and made a comparison with the classical sampling
Kantorovich operator in dealing with noised signals.
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Approximation properties and applications of
sampling-type operators
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.
In this talk, I will present an historical overview concerning the main approximation results

related to the classical sampling theory, starting from the celebrated Sampling Theorem of Whit-
takker, Kotel’nikov and Shannon, and its various generalizations. We analyse the main reasons
that brought back the introduction of the sampling-type operators, showing both classical results
and some recent development of such a theory. In particular, we discuss the pointwise, the uni-
form, and the Lp convergence, for the generalized and Kantorovich sampling operators ([1,2,4]),
showing also their saturation order ([1,5]). Furthermore, we will also present some extensions of
the mentioned families of operators, including the very recent Steklov sampling operators ([3]).
In conclusion, I will also present a real world application in the setting of biomedical diagnoses
based on image analysis ([6]), in which the application of the Kantorovich sampling operators
(in the multivariate form) plays a central role.
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This talk aims to present some results regarding the convergence and the order of approx-
imation for a class of sampling Kantorovich operators perturbed by multiplicative noise. By
using the convergence result for continuous functions with compact support (see [1]) and a den-
sity approach, we establish the convergence of these operators in the general setting of modular
spaces (see [2]). This framework allows us to apply the results to many classical cases such as
Orlicz spaces, Lp-spaces and other spaces generated by modulars without integral representation.
Speci�cally, in the case of Orlicz spaces, we further study estimates of the order of approximation
in terms of the modulus of smoothness (see [3]). As a direct consequence, we can deduce similar
estimates in Lp-spaces (1 ≤ p < +∞), and we are able to achieve sharper estimates than the
previous ones, by using the properties of the modulus of smoothness. In the �nal part of the
talk, we furnish an estimate in the space of uniformly continuous and bounded functions.
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The constrained mock-Chebyshev least squares approximation is a recently introduced method
that operates on a grid of equidistant points, aiming to eliminate the Runge phenomenon. The
implementation of the idea behind this approximation method involves interpolating the func-
tion exclusively on the subset of nodes closer to the Chebyshev–Lobatto node set of a suitable
order and using the remaining nodes to enhance the accuracy of the approximation through
a simultaneous regression. The main goal of this work is to discuss various extensions of the
constrained mock-Chebyshev least squares approximation on different domains and its general-
ization through the interpolation on zeros of orthogonal polynomials, leveraging their inherent
favorable properties.
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Multinode Shepard method: theory and applications
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In this talk, we provide an introduction to the Multinode Shepard methods and discuss their
various applications. These methods are commonly used for interpolating scattered data in both
two and three-dimensional domains [1]-[5], as well as on the surface of a sphere. Additionally, we
explore how the Multinode Shepard method can be applied to the numerical solution of elliptic
partial differential equations (PDEs) [6]-[8] and numerical integration [9].
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The Approximation of Power Functions with Exponents in (−1, 0)
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In this talk, we will describe and compare various approaches for approximating the function
fα : (0, T ] → R, t 7→ tα−1, with some α ∈ (0, 1) by sums of exponential functions, i.e. by
expressions of the form

(∗) f̃ : (0, T ] → R, t 7→
L∑

ℓ=1

wℓ exp(aℓt)

with suitably chosen values wℓ and aℓ (ℓ = 1, 2, . . . , L).
The primary application of such methods is in the construction of efficient algorithms for the

numerical computation of Riemann-Liouville fractional integrals and for the numerical solution
of Caputo-type fractional differential equations. Indeed, when comparing this concept to con-
ventional approaches, one can see that by exploiting important features of the functions of the
form (∗), both the memory and the run time requirements can be reduced significantly.

Keeping in mind this concrete application, we shall point out which features of our approxi-
mation process are particularly significant. An important aspect in this context is that we need
to clarify in what sense it is reasonable to approximate the unbounded function fα by bounded
functions like f̃ .

Clearly, to obtain an accurate approximation of the given function fα by such a function f̃ , it is
necessary to choose the parameters wℓ and aℓ carefully. By looking at the construction underlying
the sum-of-exponentials approach, we will derive certain strategies for finding suitable choices
for these parameters. It turns out that this question can be looked at from various significantly
different viewpoints each of which gives some unique insight, and so only a combination of all
these specific perspectives allows to provide a complete picture.
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Let f : R → R be a locally Lebesgue integrable function and χ : R → R. Let {tk}k∈Z be a
sequence of real numbers such that tk < tk+1 and limk→±∞ tk = ±∞, as θ ≤ θk := tk+1−tk ≤ Θ,
k ∈ Z, with some constants θ,Θ > 0. Bardaro, Butzer, Stens and Vinti [1] introduced the
Kantorovich-type sampling operators

(Sχ
wf)(x) :=

∑
k∈Z

w

θk

∫ tk+1/w

tk/w
f(u) duχ(wx− tk), x ∈ R, w > 0,

provided that the series is convergent.
The main subject of the presentation is a direct estimate and a matching two-term strong

converse estimate of the rate of approximation of these operators in variable exponent Lebesgue
spaces. The estimates are stated in terms of moduli of smoothness. They enable us to establish
that the approximation process {Sχ

w}w>0 possesses the saturation property and to describe its
saturation rate and class as well its trivial class. In addition, a Voronovskaya-type estimate for
Sχ
w is included.
It is essential that the Hardy-Littlewood maximal operator is bounded in variable exponent

Lebesgue spaces whose exponent satisfies certain assumptions.
A secondary goal is reducing the assumptions on the kernel of the operator. That leads to

certain auxiliary results, which should be known but rarely, if ever, stated; so their explicit
formulation might be helpful.

The results have recently appeared in [2].
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CQMC: Tchakalo�-like compression of QMC integration
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We present a method for Tchakalo�-like compression of Quasi-Monte Carlo (QMC) volume or
surface integration. The key tools of the algorithm are Tchakalo�-Davis-Wilhelmsen theorems on
the so-called �Tchakalo� sets� for positive linear functionals on polynomial spaces, and Lawson-
Hanson algorithm for NNLS. Such compressed formulae preserve the approximation power of
QMC up to the best uniform polynomial approximation error of a given degree of the integrand,
but using a much lower number of sampling points.
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We build on work by P. Bouboulis & S. Theodoridis, [2], and pursue their program of recovering
the kernel methods (as employed in signal analysis and machine learning theory) from real RKHS
and kernels, to the complex domain. We solve the maximum problem

sup
{ p∑

j=1

∣∣f(zj)∣∣2 : ∥f∥2 ≤ E
}

in the complex RKHS of holomorphic L2 functions f : Ω → C, for any bounded domain Ω ⊂
Cn and any finite set of points z1 , · · · , zp ∈ Ω. The result is applied to the space L2H(Bn)
of holomorphic L2 functions on the unit ball Bn ⊂ Cn. The problem of producing sampling
expansions starting from complete orthonormal systems {ϕν}ν≥0 ⊂ L2H(Ω) is taken up by
refuting [based on counterexamples, such as the Bergman kernel K(z, ζ) for the unit ball Ω = B1]
K. Yao’s hypothesis (cf. [4]) that

ϕν(z) = cν K(z, ζν)

and instead by approximating each ϕν uniformly on Ω by a linear combination of reproducing
kernels. The means to said approximation are provided by the Faber-Kaczmarz-Mycielski algo-
rithm A(h) learning (cf. [3]) from the data

{(
ζk , ϕν(ζk)

)}
k≥0

and producing an approximating
sequence

{(
ϕν

)
k

}
k≥0

⊂ L2H(Ω).
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This talk deals with the numerical treatment of the following mixed Volterra-Fredholm integral
equation

(I + µV K)f = g,

where µ ∈ R \ {0}, f is the unknown function, g is a given right-hand side, I is the identity
operator, V is the Volterra operator given by

(V f)(y) =

∫ y

−1
h(x, y)f(x)(y − x)ρ(1 + x)σdx, ρ, σ > −1,

with h an assigned kernel, and K is the Fredholm operator defined as

(Kf)(y) =

∫ 1

−1
k(x, y)f(x)(1− x)α(1 + x)βdx, α, β > −1,

with k a known kernel.
A method of Nyström type is presented to approximate the solution of the equation in the case

when the given functions may have algebraic singularities at y = ±1. The integral operator is
approximated by a Gauss-product mixed rule and a theoretical analysis of the method is carried
out in suitable weighted spaces equipped with the uniform norm. Numerical tests are given to
show the good performance of the procedure.
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On the constants in Hardy Inequalities in Lp and lp
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The behavior of the smallest possible constants d(a, b) and dn in classical Hardy inequalities∫ b

a

(
1

x

∫ x

a
f(t)dt

)p

dx ≤ d(a, b)

∫ b

a
[f(x)]pdx

and
n∑

k=1

(1
k

k∑
j=1

aj

)p
≤ dn

n∑
k=1

apk.

is discussed.
In the case p = 2 the exact constant d(a, b) and the exact rate of convergence of dn are

established and the extremal function and “almost extremal” sequence are found.
For 2 < p <∞ the exact rate of convergence of d(a, b) and dn and “almost extremal” function

and sequence are found.

1This study is financed by the European Union-NextGenerationEU, through the National Recovery and Re-
silience Plan of the Republic of Bulgaria, project No BG-RRP-2.004-0008.
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Approximations of Topological Structures in Flows Described by
Navier-Stokes Equations for Incompressible Fluid

V.A.Galkin
Department of Applied Mathematics, Surgut State University, Russia

Classes of exact solutions of the Navier—-Stokes equations for incompressible fluid flows are
obtained. Invariant varieties of flows are highlighted and the structure of solutions is described.
It is established that the typical invariant domains of such flows are rotation figures, in particular
homeomorphic to torus, forming the structure of a topological bundle, for example in a ball, a
cylinder and generally in complexes composed of such figures. The structures of these flows
obtained by approximation by the simplest 3-D vortex unsteady flows are investigated. Classes
of exact solutions of the Navier–Stokes system for an incompressible fluid in bounded domains
of space R3 based on the superposition of the above topological bundles are distinguished.
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On wavelet type Chlodovsky Operators and their Bézier-type
variants

Harun Karsli
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This paper deals with construction and studying wavelet type Chlodovsky operators and their
Bézier variants by using the compactly supported Daubechies wavelets of the target function f .
By using the Chanturiya modulus of variation we estimate the rate of pointwise convergence of
(WCn,αf) (x) at those x > 0 at which the one-sided limits f(x+), f(x−) exist.

It is clear that our wavelet type operators include at least the classical version of the Chlodovsky
operators and the Kantorovich form. Hence our results extend some of the previous results on
Chlodovsky, Chlodovsky Bézier, Chlodovsky-Kantorovich Bézier operators presented in [3], [4]
and [5].
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Chebyshev admissible meshes and Lebesgue constants
of complex polynomial projections
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We construct admissible polynomial meshes on piecewise polynomial or trigonometric curves
of the complex plane, by mapping univariate Chebyshev points. Such meshes can be used for
polynomial least-squares, for the extraction of Fekete-like and Leja-like interpolation sets, and
also for the evaluation of their Lebesgue constants.
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Nyström methods for FIE’s based on RBF functions
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The poster deals with the numerical approximation of 2D Fredholm linear integral equations
of the type

f(x, y)− µ

∫
S
k(x, y, s, t)f(s, t)dsdt = g(x, y), (x, y) ∈ S,

where S is the square [−1, 1]2, g and k are known functions defined on S and S2, respectively, µ
is a fixed real parameter and f is the unknown in S.

For this kind of equation several methods were proposed, based on piecewise polynomial
approximation (see for instance [1], [4]) or on global approximation methods using tensorial
operators (see [5], [3]). All these methods require that the known functions can be evaluated at
fixed grids in [−1, 1]2.

Here we propose numerical methods of Nyström type for solving FIEs where k and g are
known only on scattered data. In particular we compare two Nyström methods, one based on
a cubature formulas introduced in [6], which uses the RBF functions, the other based on the
near-optimal meshless cubature formula introduced in [2].Some numerical tests show the better
performance on the second one.
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Approximate solution of singular fractional integro-differential
equations
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In [2], the unique solvability of singular fractional differential equations was studied. More
recently (see [1]), the numerical solution of singular fractional integro-differential equations with
constant coefficients was investigated.

For the Banach space of q times continuously differentiable functions u on [0, T ] we use the
notation Cq[0, T ], q ∈ N0 = {0, 1, 2, . . . }, C0[0, T ] = C[0, T ]. By L1(0, 1), we denote the Banach
space consisting of real or complex-valued functions φ defined on the interval (0, 1) such that
∥φ∥L1(0,1) =

∫ 1
0 |φ(x)|dx <∞.

In this work, we consider singular fractional integro-differential equations of the form

(1) (Dα
0M

αu)(t) =

l∑
k=1

bk(t)(D
αk
0 Mαku)(t) + b(t)(Vψu)(t) + f(t), 0 < t ≤ T.

Here the multiplication operator Mα, α ∈ R = (−∞,∞), is defined as (Mαu)(t) = tαu(t)
(0 < t ≤ T ) for u ∈ C[0, T ],

(Vψu) (t) =

∫ t

0

1

t
ψ
(s
t

)
u(s)ds =

∫ 1

0
ψ(x)u(tx)dx, 0 ≤ t ≤ T, u ∈ C[0, T ],

i.e. Vψ : C[0, T ] → C[0, T ] is a cordial Volterra integral operator [3] with core ψ ∈ L1(0, 1),
α, αk ∈ R and

(2) q < α ≤ q + 1, α > αk ≥ 0, bk, b, f ∈ Cq[0, T ], k = 1, 2, . . . , l, q ∈ N0.

In equation (1) the fractional differential operator Dα
0 , of the order α ∈ [0,∞), is defined as

the inverse of the Riemann-Liouville integral operator Jα : C[0, T ] → C[0, T ] given by (in the
following Γ denotes the Euler gamma function)

(Jαu)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, u ∈ C[0, T ], t > 0, α > 0; J0 = I,

on the space JαC[0, T ], i.e. Dα
0 v = (Jα)−1v, where v belongs to the range JαC[0, T ] of Jα,

α ≥ 0.
We first present some results about the unique solvability of equations of the form (1). Next,

we introduce a scheme based on piecewise polynomial collocation to find the numerical solution of
such equations and analyse the convergence and the convergence order of the proposed method.
We also give the results of numerical experiments.
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A machine learning perspective for optimized kernel-based
approximation
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Meshfree kernel methods have proved to be an effective tool in many fields of research. Their ef-
fectiveness usually depends on a shape hyperparameter, which is often tuned via cross-validation
schemes. In this talk, we present a learning strategy that extends the classical single-parameter
framework, and returns a kernel that is optimized not only in the Euclidean directions, but that
further incorporates, e.g., kernel rotations. Then, by combining this approach with the usage
of greedy strategies, we obtain an optimized basis that adapts to the data. Beyond a rigorous
analysis on the convergence of the so-constructed two-layered kernel orthogonal greedy algorithm
(2L)-KOGA, the benefits of the presented approach are highlighted on both synthesized and real
benchmark datasets.
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Common invariant cones of sets of matrices
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We present a numerical algorithm to decide whether a finite family of square matrices possesses
a common invariant cone. This question arises naturally in the joint spectral radius theory. For
example, if a set of matrices possess a common invariant cone, then:
• The invariant polytope algorithm can use “larger” convex hulls, and thus is more efficient [2].
• The lower spectral radius is continuous, and thus can be computed [2].
• The 1-spectral radius equals the spectral radius of an easily constructible matrix, and thus can
be computed [1].

Our algorithm is based on a combination of the invariant polytope algorithm and the tree
algorithm [2,3,4]. Numerical examples indicate that the algorithm works for a large range of
families of matrices.
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This talk deals with the numerical treatment of Volterra-Fredholm integral equations (VFIEs)
of the second kind. In the literature, these equations appear in two forms, namely

(I + µ1V + µ2K)f = g,

and
(I + µV K)f = g,

where µ, µ1, µ2 ∈ R ∖ {0}, f is the unknown function, g is a given right-hand side, I is the
identity operator, V is the Volterra integral operator given by

(V f)(y) =

∫ y

−1
h(x, y)f(x)(y − x)ρ(1 + x)σdx, ρ, σ > −1,

and K is the Fredholm integral operator defined as

(Kf)(y) =

∫ 1

−1
k(x, y)f(x)(1− x)α(1 + x)βdx, α, β > −1.

Many mathematical models related to epidemic evolution, physical and biological problems, as
well as parabolic boundary integral equations are formulated in terms of these integral equations.

In this context, we consider the case in which the kernels h and k may have algebraic singu-
larities at the endpoints or along the boundary at x = y. Moreover, we also assume that the
right-hand side may have algebraic singularities at ±1.

We present a global approximation method of Nyström type to approximate the solution of
such equations. Furthermore, we provide conditions that guarantee the stability and convergence
of the method and we show some numerical examples to confirm the theoretical expectations.

References
[1] A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer,

Berlin, 2011.

E–mail: domenico.mezzanotte@unito.it.



How differential geometry works in the RBF approximation
theory!
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Given a set of n distinct points {xj}nj=1 ⊂ Rd and corresponding data values {fj}nj=1, the
radial basis function (RBF) interpolant is given by

s(x) =
n∑

j=1

λjϕ(∥x− xj∥),(1)

where ϕ(r), r ≥ 0, is some radial function (cf. e.g. [1]). The expansion coefficients λj are
determined from the interpolation conditions s(xj) = fj for j = 1, . . . , n, which leads to a
symmetric linear system Aλ = f , where A = [ϕ(∥xi − xj∥)]1≤i,j≤n . The existence of a solution
is assured for positive definite RBFs and also for conditionally positive definite RBFs by adding
a lower degree polynomial to (1). We can introduce a shape parameter as ϕ (εr) allowing to
scale the basis function ϕ making it flatter as ε → 0 and spiky as ε → ∞. It is well-known that
the RBF method is increasingly more accurate on steeper gradient surfaces and has difficulty
approximating flat functions. The apparent reason is that the flat surfaces are represented
by linear combinations of vary small shape parameters ε. But as ε becomes small, so does
the condition number. Flat surfaces are parts of planes, cones, or cylinders where the Gaussian
curvatures are zero. So it seems that one can choose appropriate RBFs according to the geometric
properties of the function to be approximated [2].

In this talk, we first go through differential geometry basics [4]. Then we introduce the
fundamental theorem of surface theory which describes the conditions for congruency of two
parametrized surfaces. Then RBFs are categorized as surfaces of revolution according to the
relation between their Gaussian and mean curvatures with the shape parameter ε. Some dis-
cussions are also given on the shape parameter selection of RBFs.
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Bounds for the Extreme Zeroes of Jacobi Polynomials

Geno Nikolov1
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The zeros of classical orthogonal polynomials have been a topic of intensive investigation.
There are many reasons for this interest, such as the nice electrostatic interpretation of the zeros
of the Jacobi, Laguerre and Hermite polynomials, their important role as nodes of Gaussian
quadrature formulae, as well as the key role these zeros play in some extremal problems.

Derivation of sharp upper and lower bounds for the extreme zeros of orthogonal polynomials
is of particular interest. We shall discuss some recent results about the extreme zeroes of the
Jacobi and, in particular, of Gegenbauer polynomials. Typically, comparison of the di�erent
estimates does not single out �best bounds� as these estimates depend on two or three parameters.
Sometimes preference is given to estimates given by simple expressions which are easier to work
with. We are going to present bounds for the extreme zeroes of Jacobi polynomials, some of
which are extremely simple, other are rather sharp, and some meet both criteria for simplicity
and sharpness.
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Positive linear operators, convexity and approximation
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Positive linear operators are important tools in Approximation Theory. In their study a

signi�cant problem is the relationship with convex functions. Basically, this relationship can

be expressed in terms of convex stochastic orders. We will present some known facts and new

results in this context, as well as some possible new directions of investigation.

E�mail: author1@server.it - author2@server.it - author3@server.it.



Approximation Techniques for Environmental Modeling: Insights
and Applications
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Environmental modeling, particularly in hydrological settings, demands robust and versatile
approximation methods capable of addressing the multifaceted nature of environmental chal-
lenges. This presentation will look at advances in numerical simulations that can enhance the
precision of long-term forecasts by modeling time-dependent processes in environmental sys-
tems, notably through the approximation of Dirac delta functions and the strategic selection of
evaluation points.

Traditional numerical methods like finite elements and finite differences often struggle with
the mesh dependence in approximating solutions to Partial Differential Equations (PDEs). How-
ever, advancements in scientific machine learning, particularly through Physics-Informed Neural
Networks (PINNs), offer a promising alternative. This paper examines the efficacy of these meth-
ods in a space-time domain, focusing on groundwater flow equations, leveraging both theoretical
insights and applied methodologies from recent literature. Additionally, this study explores how
to manage the singularities inherent in PDEs through the regularization of Dirac delta functions.
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On unisolvence of unsymmetric random Kansa collocation
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In some recent papers the authors and some collaborators have investigated almost sure in-
vertibility of unsymmetric random Kansa collocation matrices by some classes of RBF, for the
Poisson equation with Dirichlet boundary conditions, i.e.{

∆u(P ) = f(P ) , P ∈ Ω ,
u(P ) = g(P ) , P ∈ ∂Ω ,

over a suitable bounded domain Ω.
The family of RBF includes Thin-Plate splines, Gaussians, MultiQuadrics, Generalized Inverse

MultiQuadrics and Matérn. Sketches of the proofs will be shown, depending on the properties
of the RBF.
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A new kernel for uniform approximation in RKHS
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We focus on the problem of the uniform approximation of a function in reproducing kernel
Hilbert spaces [1]. Recently, such spaces are having a growing interest in literature, since they
are widely used in learning theory.

If the trial set of points is well distributed on the underlying manifold, hyperinterpolation
associated with a positive quadrature rule can be considered [2, 3]. In the cases that such an
approximation is not satisfactory (e.g., the Lebesgue constants grow algebraically) we propose
to improve the approximation by using the same data but a new kernel function depending on
an additional parameter. The properties of the new approximant will be shown both from the
theoretical and experimental point of view. More details can be found in [4].
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Recent Progress in Weighted Lp-Approximation of Functions
by Kantorovich-type Operators
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Here we summarize recent results of the authors on weighted Lp-approximation of functions
by Kantorovich-type modifications of certain classical linear operators.

It is well-known that the original Baskakov operator, Meyer-König and Zeller operator, Szász-
Mirakjan operator, are not suitble for approximation of functions in Lp spaces. By implementing
their Kantorovich-type variants we succeeded to obtain direct and strong converse results for the
weighted approximation of functions in Lp-norm.

In general, the estimates involve related K-functionals.
Our main results on the subject are as follows.

• For the Meyer-König and Zeller-Kantorovich operator:
Direct inequality for the weights w(x) = (1− x)α, α ∈ R (IG, PP, RU; 2018).

• For the Baskakov-Kantorovich operator:
Direct inequality for the weights w(x) = (1 + x)α, α ∈ R (PP; 2020);
Strong converse inequality for the weights w(x) = (1 + x)α, α < 0 (IG, RU; 2020).

• For the Szász-Mirakjan-Kantorovich operator:
Direct inequality for the weights w(x) = (1 + x)α, α ∈ R (IG, PP; 2021);
Strong converse inequality for the weights w(x) = (1+x)α, α < 0 (IG, PP, RU; 2024).

Furthermore, for the Baskakov-Kantorovich operator and for the Szász-Mirakjan-Kantorovich
operator we obtain a complete characterization for the rate of the weighted approximation error
by K-functionals.

1Acknowledgments: This study is financed by the European Union-NextGenerationEU, through the National
Recovery and Resilience Plan of the Republic of Bulgaria, project No BG-RRP-2.004-0008.

E–mail: rumenu@fmi.uni-sofia.bg.



Meshfree Domain Decomposition Methods with Fundamental
Solutions for Elliptic Boundary Value Problems
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The Method of Fundamental Solutions (MFS) is a Trefftz type meshfree and integration-free
numerical scheme for the approximate solution of linear elliptic partial differential equations
(PDEs). In its original formulation, see [1], the MFS is restricted to homogeneous PDEs with
known fundamental solution. Nevertheless, this method has attracted significant attention from
the scientific community due to its simple formulation and computational implementation and,
most importantly, due to its remarkable accuracy when applied to boundary value problems
(BVPs) posed in smooth settings, e.g. [2].

In the last decades, a large number of variants of the MFS have been developed and success-
fully applied to direct and inverse problems in the fields of acoustics, elasticity, electromagnetism,
fluid mechanics, option prising, etc., e.g. [3]. In [4,5], we addressed the numerical simulation of
acoustic and elastic wave propagation problems and extended the MFS to the non-homogeneous
Helmholtz and Cauchy-Navier PDEs, respectively. In particular, by considering basis functions
(fundamental solutions) that vary not only in terms of the location of their source points (sin-
gularities) but also with respect to their frequency, we formulated a domain version of the MFS,
called MFS-D.

The main difficulty in the application of the MFS-D is that it requires the solution of a large
and fully-populated ill-conditioned linear system, where the PDE and the boundary conditions
of the problem are collocated simultaneously. The computational cost of this method becomes
prohibitive when large scale problems, posed in domains with complex geometries, are considered.
MFS-D is also not applicable to PDEs with singular, e.g. discontinuous, source terms, due to
the analyticity of its basis functions in the domain of interest. In view of these problems, most
of which are also shared by the classical MFS, it becomes important to investigate the use of
domain decomposition techniques in the context of the MFS.

In the first part of this talk, we present some recent results, see [6,7], where we couple the MFS
with a non-overlapping domain decomposition method (DDM). In particular, for the modified
Helmholtz PDE, we consider an iterative approach, with Robin-Robin type transmission condi-
tions on the interior boundaries, known as Lions non-overlapping DDM, e.g. [8]. The solution
of the BVP is calculated in two steps. First, a particular solution of the PDE is approximated
by superposition of acoustic plane waves, for a set of test frequencies and directions of propa-
gation. In the second step, we use the classical MFS with Lions DDM to solve the associated
homogeneous BVP. Convergence of the iterative scheme is proven theoretically and exemplified
numerically for domains with non-trivial geometry. The accuracy of the method is illustrated
for PDEs with discontinuous source terms.

In the second part of the talk, we focus on the overlapping domain decomposition approach.
In particular, we combine the MFS with the Schwarz alternating DDM, see [9]. The direct appli-
cation of this hybrid method shows unsatisfactory accuracy due to the presence of singularities
in the boundary conditions of the sub-problems. We overcome this issue by augmenting the MFS

1Acknowledgments: The author was partially funded by national funds through the FCT – Fundação para
a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/04621/2020 (https://doi.org/10.54499/
UIDB/04621/2020) and UIDP/04621/2020 (https://doi.org/10.54499/UIDP/04621/2020) of Center for Compu-
tational and Stochastic Mathematics (CEMAT).
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approximation basis with a set of singular particular solutions of the PDE, that correctly fit the
local behaviour of the solution of the BVP. The accuracy and convergence of the resulting method
are illustrated for BVPs for the Laplace PDE, posed in domains with geometric singularities.
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Approximate solutions to linear fractional integro-differential
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We consider a class of fractional weakly singular integro-differential equations

(Dα2
Capy)(t) + d1(t) (D

α1
Capy)(t) + d0(t)y(t) +

∫ t

0
(t− s)−κ0K0(t, s)y(s)ds

+

∫ t

0
(t− s)−κ1K1(t, s)(D

θ
Capy)(s)ds = f(t), 0 ≤ t ≤ b,(1)

subject to boundary conditions

(2) ai y
(i)(0) + bi y

(i)(b) = γi, ai, bi, γi ∈ R, i = 0, . . . , n− 1.

Here Dδ
Cap is the Caputo differential operator of order δ > 0 and n := ⌈α2⌉ is the smallest integer

greater or equal to the fractional order α2. We assume that

0 < α1 < α2 ≤ n, θ ∈ (0, α2), κ0, κ1 ∈ [0, 1)

and that the given functions d0, d1, K0,K1 and f are continuous on their respective domains.
On the basis of [1] we study the existence, uniqueness and regularity of the solution y to

problem (1)–(2) and show that under suitable conditions this problem can be reformulated as
a Volterra integral equation of the second kind with respect to the fractional derivative Dα2

Capy.
We regularize the solution of this integral equation with the use of a suitable smoothing trans-
formation and construct a numerical solution to the transformed integral equation by applying
a piecewise polynomial collocation method on a mildly graded or uniform grid. We show the
convergence of the proposed algorithm and present global superconvergence results for a class
of specific collocation parameters. Finally, we complement the theoretical results with some
numerical examples.
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A Formal Approximation of CNN Filters
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Deep learning approaches, in particular Convolutional Neural Networks (CNNs), are currently
a very e�ective tool in various �elds such as prediction, regularization and approximation, classi-
�cation etc.. Some examples can be found in [1, 2]. However, one of the major criticisms to the
aforementioned approaches stems from the lack of a complete comprehension of their behavior,
especially from a mathematical point of view. In particular, CNNs are very interesting as their
architecture is based on �lters that are learnt during the training phase. Only a complete un-
derstanding of this important CNN component can help in understanding the whole framework.
That's why there are few but insightful approaches in literature that try to solve this problem,
such as [3, 4, 5, 6]. This talk will focus on an analysis of the �lters learnt by a very simple
CNN for a simple task: classi�cation between a rectangular and triangular function under noisy
condition. It will be shown that CNN �lters have a common approximation in the frequency
domain that is independent of their depths and size and is based on Generalized Gabor Filters.
Moreover �lters at di�erent scales can be linked by a scale parameter. This parametric formula-
tion allows us to describe the whole �lters frequency response behavior through a suitable pde.
Such an approach paves the way to a better understanding of CNNs from a theoretical point of
view and may allow to design swallower CNNs from a practical point of view.
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Minimal cubature rules and interpolation on the square
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.
For a weight function W on [−1, 1]2 that is symmetric with respect to the origin, we consider

the cubature rule of degree 2n− 1∫ 1

−1

∫ 1

−1
f(x, y)W (x, y) =

N∑
k=1

λkf(xk, yk), deg f ≤ 2n− 1.

The number of nodes of such a cubature rule satisfies N ≥ Nmin(n), where

Nmin(n) :=
n(n+ 1

2
+
⌊n
2

⌋
.

The cubature rules with Nmin(n) nodes are called minimal. The nodes of such a cubature rule
also admit unique interpolation in an appropriate subspace of polynomials of degree ≤ n. The
known weight functions that admit minimal cubature rules of degree 2n− 1 include the product
Chebyshev weight [1] and, more generally [2,3],

W (x, y) =
|x− y|2α+1|x+ y|2β+1

√
1− x2

√
1− y2

, α, β > −1.

In this talk, we discuss several new families of weight functions that also admit minimal cubature
rules.
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